European Network of Transmission System Operators for Electricity

ENTSO-E HVDC UTILISATION AND UNAVAILABILITY STATISTICS 2023

16 September 2024

From: DISTAC Subgroup under Regional Group Nordic

ENTSO-E HVDC Utilisation and Unavailability Statistics 2023 Copyright © 2024 ENTSO-E AISBL

Report rendered 16 September 2024

ENTSO-E Mission Statement

Who we are

ENTSO-E, the European Network of Transmission System Operators for Electricity, is the association for the cooperation of the European transmission system operators (TSOs). The 40 member TSOs, representing 35 countries, are responsible for the secure and coordinated operation of Europe's electricity system, the largest interconnected electrical grid in the world. In addition to its core, historical role in technical cooperation, ENTSO-E is also the common voice of TSOs.

ENTSO-E brings together the unique expertise of TSOs for the benefit of European citizens by keeping the lights on, enabling the energy transition, and promoting the completion and optimal functioning of the internal electricity market, including via the fulfilment of the mandates given to ENTSO-E based on EU legislation.

Our mission

ENTSO-E and its members, as the European TSO community, fulfil a common mission: Ensuring the security of the interconnected power system in all time frames at pan-European level and the optimal functioning and development of the European interconnected electricity markets, while enabling the integration of electricity generated from renewable energy sources and of emerging technologies.

Our vision

ENTSO-E plays a central role in enabling Europe to become the first climate-neutral continent by 2050 by creating a system that is secure, sustainable and affordable, and that integrates the expected amount of renewable energy, thereby offering an essential contribution to the European Green Deal. This endeavour requires sector integration and close cooperation among all actors.

Europe is moving towards a sustainable, digitalised, integrated and electrified energy system with a combination of centralised and distributed resources. ENTSO-E acts to ensure that this energy system keeps consumers at its centre and is operated and developed with climate objectives and social welfare in mind.

ENTSO-E is committed to use its unique expertise and system-wide view – supported by a responsibility to maintain the system's security – to deliver a comprehensive roadmap of how a climate-neutral Europe looks.

Our values

ENTSO-E acts in solidarity as a community of TSOs united by a shared responsibility.

As the professional association of independent and neutral regulated entities acting under a clear legal mandate, ENTSO-E serves the interests of society by optimising social welfare in its dimensions of safety, economy, environment, and performance.

ENTSO-E is committed to working with the highest technical rigour as well as developing sustainable and innovative responses to prepare for the future and overcoming the challenges of keeping the power system secure in a climate-neutral Europe. In all its activities, ENTSO-E acts with transparency and in a trustworthy dialogue with legislative and regulatory decision makers and stakeholders.

Our contributions

ENTSO-E supports the cooperation among its members at European and regional levels. Over the past decades, TSOs have undertaken initiatives to increase their cooperation in network planning, operation and market integration, thereby successfully contributing to meeting EU climate and energy targets.

To carry out its legally mandated tasks, ENTSO-E's key responsibilities include the following:

> Development and implementation of standards, network codes, platforms and tools to ensure secure system and market operation as well as integration of renewable energy; > Assessment of the adequacy of the system in different timeframes;

 Coordination of the planning and development of infrastructures at the European level (Ten-Year Network Development Plans, TYNDPs);

> Coordination of research, development and innovation activities of TSOs;

> Development of platforms to enable the transparent sharing of data with market participants.

ENTSO-E supports its members in the implementation and monitoring of the agreed common rules.

ENTSO-E is the common voice of European TSOs and provides expert contributions and a constructive view to energy debates to support policymakers in making informed decisions.

Executive Summary

The ENTSO-E HVDC Utilisation and Unavailability Statistics 2023 report provides an overview of the Nordic and Baltic HVDC links as well as a detailed view of transmission, limitations, and outages of each individual link.

In 2023, 76.4 TWh (64 % of the total technical capacity, E_{max}) of electric energy was transmitted through the Nordic and Baltic HVDC links, as seen in Figure 1. The total capacity not used was 31.2 TWh (26 % of the total technical capacity, E_{max}).

The HVDC links with most available technical capacity are Estlink 2 (86 %), Swepol (82 %) and Fenno-Skan 1 (80 %).

Figure 1: Annual utilisation of all HVDC links.

The percentage of unavailable technical capacity (E_U) in 2023 was 10 % as shown in Table 1. The total number of disturbance outages was 96, preventing 3.6 TWh (3.0 % of the total technical capacity, (E_U)) of potential energy transmission. The total number of maintenance outages (planned and unplanned) were 134 in 2023, preventing 4.45 TWh (3.7 % of the total technical capacity, Emax) of potential energy transmission. Limitations represent 3.41 TWh (2.9 %) of the total technical capacity (E_U) in 2023.

The HVDC links with most unavailable technical capacity due to outages and limitations are Kontek (43 %), South West Link 1 (36 %) and Skagerrak 2 (22 %). Kontek had a major cable fault on the German side. The cable was unavailable for 2 months at the end of the year. South West Link 1 had one major disturbance on DC yard and valve hall equipment which lasted several months and had a big impact on the availability of the link. Limitations are normal in Skagerrak 2 due to the careful operation of the Skagerrak connection from 2019–2023 to maintain acceptable electrode current levels.

Figure 2: Annual unavailability (%), all HVDC links.

The most utilised market connections in 2023 were SE4-PL (82 %), FI-EE (80 %), SE4-LT (77 %) and NO2-UK (76 %) as shown in Table 1. Five other market connections reached a utilisation rate of 60–70 % and five market connections were utilised between 50–60 % of the maximum technical capacity. Lowest utilisation had DK2–DE (45 %).

Table 1: The annual utilisation (%) of HVDC links per market connection.

The most utilised induvial links were Estlink2 (86 %), SwePol (82 %), Fenno-Skan 1 (80 %), NordBalt (77 %), North Sea Link 1 (76 %), North Sea Link 2 (76 %), COBRAcable (69 %), EstLink 1 (69 %), Konti-Skan 1 (68 %) and Konti-Skan 2 (68 %) of the total technical capacity, (E_{max}), as shown in Figure 4.1.

Table of contents

Ex	ecutiv	ve Summary	i			4.4.12	
						4.4.13	
Та	ble of	f contents	ii			4.4.14	
	-					4.4.15	
Lis	st of F	igures	iii			4.4.16	
						4.4.17	
LIS	ST OT I	ables	v			4.4.18	
1	Intre	aduction and background	1			4.4.19	
1	1 1		1			4.4.20	
	1.1		. I 1			4.4.21	
	1.2		. т			4.4.22	
2	Met	hods and definitions	2			4.4.23	
-	wict		-			4.4.24	
3	Tech	nnical details of the HVDC links	3	De	£		
				Re	ieren	ces	
4	Resu	ults	5	⁵ Glossary			
	4.1	Overview for each HVDC link in 2023	. 5	•			
	4.2	HVDC links: An overview of 2012–2023	. 8	Appendices			
	4.3	Markets connection: An overview of 2012-	-				
		2023	. 12	Α	Sche	ematic p	
	4.4	Individual presentations of each HVDC link	14	Б	ראס		
		4.4.1 Baltic Cable	. 15	D	וכוס		
		4.4.2 COBRAcable	. 17	С	Con	tact pers	
		4.4.3 EstLink 1	. 19	Ũ			
		4.4.4 EstLink 2	. 21	D	Sort	ed overv	
		4.4.5 Fenno-Skan 1	. 23		for a	all HVDC	
		4.4.6 Fenno-Skan 2	. 25				
		4.4.7 Kontek	. 27	Ε	Add	itional fi	
		4.4.8 Konti-Skan 1	. 29		E.1	Annual	
		4.4.9 Konti-Skan 2	. 31		E.2	Additic	
		4.4.10 LitPol Link	. 33			hours ι	
		4.4.11 NordBalt	. 35		E.3	Additic	

	4.4.12	NordLink 1	37
	4.4.13	NordLink 2	39
	4.4.14	NorNed	41
	4.4.15	North Sea Link 1	43
	4.4.16	North Sea Link 2	45
	4.4.17	Skagerrak 1	47
	4.4.18	Skagerrak 2	49
	4.4.19	Skagerrak 3	51
	4.4.20	Skagerrak 4	53
	4.4.21	South West Link 1	55
	4.4.22	South West Link 2	56
	4.4.23	Storebaelt	57
	4.4.24	SwePol	59
ferend	ces		61
ossary	,		62
pendi	ices		63
Sche	matic p	resentation of HVDC links	64
DIST	AC/CIGR	E origin of event classification	65
Cont	act pers	ons	66
Sorte	ed overv	iew of utilisation and unavailability	
for a	II HVDC	links	67
Addi	tional fi	gures	69
E.1	Annual	utilisation per type of HVDC converter	69
E.2	Additio	nal figures with percentages of	
	hours ι	unavailable	70
E.3	Additio	nal figures with origin of event	73

entso😔

List of Figures

1	Annual utilisation of all HVDC links in per-	
2	centages.	۱
2	Annual unavailability (%), all HVDC links	I
2.1	The hierarchy of the availability and utilisa-	
	tion categories used in the HVDC statistics .	2
4.1	Utilisation (%) by category for each HVDC	
	link in 2023	6
4.2	Unavailable technical capacity (%) for each	
	HVDC link in 2023	7
4.3	The number of outages for each HVDC link	
	in 2023	7
4.4	Annual utilisation percentage of all HVDC	~
		8
4.5	Annual utilisation (MWh) of all HVDC links .	9
4.6	Annual utilisation rate grouped by utilisa-	10
47	tion percentage	10
4.7	Annual unavailabile technical capacity (%)	10
18	Annual hours (%) affected by limitations or	10
4.0	Annual hours (20) anected by initiations of	11
49	Utilisation (%) by category for each market	11
4.5	connection in 2023	12
4.10	Map of HVDC links in this report	14
4.11	Baltic Cable availability and utilisation	
	monthly	15
4.12	Annual utilisation of Baltic Cable	16
4.13	Annual percentage of unavailability hours	
	for Baltic Cable	16
4.14	Annual number of outages for Baltic Cable	16
4.15	COBRAcable availability and utilisation	
	monthly	17
4.16	Annual utilisation of COBRAcable	18
4.17	Annual percentage of unavailability hours	
	for COBRAcable	18
4.18	Annual number of outages for COBRAcable	18
4.19	EstLink 1 availability and utilisation monthly	19
4.20	Annual utilisation of EstLink 1	20
4.21	Annual percentage of unavailability for Est-	20
1 22	Appual number of outages for Estlink 1	20
4.22	Est ink 2 availability and utilisation monthly	20
4.23	Annual utilisation of EstLink 2	21
4 25	Annual percentage of unavailability hours	22
4.25	for Estlink 2	22
4.26	Annual number of outages for EstLink 2	22
4.27	Fenno-Skan 1 availability and utilisation	
	monthly	23
4.28	Annual utilisation of Fenno-Skan 1	24
4.29	Annual percentage of unavailability hours	
	for Fenno-Skan 1	24

4.30	Annual number of outages for Fenno-Skan 1	24
4.31	Fenno-Skan 2 availability and utilisation	
	monthly	25
4.32	Annual utilisation of Fenno-Skan 2	26
4.33	Annual percentage of unavailability hours	
	for Fenno-Skan 2	26
4.34	Annual number of outages for Fenno-Skan 2	26
4.35	Kontek availability and utilisation monthly .	27
4.36	Annual utilisation of Kontek	28
4.37	Annual percentage of unavailability hours	
	for Kontek	28
4.38	Annual number of outages for Kontek	28
4.39	Konti-Skan 1 availability and utilisation	
	monthly	29
4.40	Annual utilisation of Konti-Skan 1	30
4.41	Annual percentage of unavailability hours	
	for Konti-Skan 1	30
4.42	Annual number of outages for Konti-Skan 1	30
4.43	Konti-Skan 2 availability and utilisation	
	monthly	31
4.44	Annual utilisation of Konti-Skan 2	32
4.45	Annual percentage of unavailability hours	
	for Konti-Skan 2	32
4.46	Annual number of outages for Konti-Skan 2	32
4.47	LitPol Link availability and utilisation monthly	33
4.48	Annual utilisation of LitPol Link	34
4.49	Annual percentage of unavailability hours	
	for LitPol Link	34
4.50	Annual number of outages for LitPol Link .	34
4.51	NordBalt availability and utilisation monthly	35
4.52	Annual utilisation of NordBalt	36
4.53	Annual percentage of unavailability hours	
	for NordBalt	36
4.54	Annual number of outages for NordBalt	36
4.55	NordLink 1 availability and utilisation monthly	37
4.56	Annual utilisation of NordLink 1	38
4.57	Annual percentage of unavailability hours	
	for NordLink 1	38
4.58	Annual number of outages for NordLink 1 .	38
4.59	NordLink 2 availability and utilisation monthly	39
4.60	Annual utilisation of NordLink 2	40
4.61	Annual percentage of unavailability hours	
	for NordLink 2	40
4.62	Annual number of outages for NordLink 2 .	40
4.63	NorNed availability and utilisation monthly	41
4.64	Annual utilisation of NorNed	42
4.65	Annual percentage of unavailability hours	
'	for NorNed	42
4.66	Annual number of outages for NorNed	42
4.67	North Sea Link 1 availability and utilisation	-
-	monthly	43
4.68	Annual utilisation of North Sea Link 1	44

ENTSO-E HVDC Utilisation and Unavailability Statistics 2023

| 16 September 2024

4.69	Annual percentage of unavailability hours	
	for North Sea Link 1	44
4.70	Annual number of outages for	
		44
4.71	North Sea Link 2 availability and utilisation	
	monthly	45
4.72	Annual utilisation of North Sea Link 2	46
4.73	Annual percentage of unavailability hours	
	for North Sea Link 2	46
4.74	Annual number of outages for	
	North Sea Link 2	46
4.75	Skagerrak 1 availability and utilisation	
	monthly	47
4.76	Annual utilisation of Skagerrak 1	48
4.77	Annual percentage of unavailability hours	
	for Skagerrak 1	48
4.78	Annual number of outages for Skagerrak 1.	48
4.79	Skagerrak 2 availability and utilisation	
	monthly	49
4.80	Annual utilisation of Skagerrak 2	50
4.81	Annual percentage of unavailability hours	
	for Skagerrak 2	50
4.82	Annual number of outages for Skagerrak 2.	50
4.83	Skagerrak 3 availability and utilisation	
	monthly	51
4.84	Annual utilisation of Skagerrak 3	52
4.85	Annual percentage of unavailability hours	
	for Skagerrak 3	52
4.86	Annual number of outages for Skagerrak 3.	52
4.87	Skagerrak 4 availability and utilisation	
	monthly	53
4.88	Annual utilisation of Skagerrak 4	54
4.89	Annual percentage of unavailability hours	
	for Skagerrak 4	54
4.90	Annual number of outages for Skagerrak 4.	54
4.91	South West Link 1 availability and utilisa-	
	tion monthly	55
4.92	South West Link 2 availability and utilisa-	
	tion monthly	56
4.93	Storebaelt availability and utilisation monthly	57
4.94	Annual utilisation of Storebaelt	58
4.95	Annual percentage of unavailability hours	
	for Storebaelt	58
4.96	Annual number of outages for Storebaelt	58

4.97	SwePol availability and utilisation monthly .	59
4.98	Annual utilisation of Swepol	60
4.99	for SwePol	60
4.100	OAnnual number of outages for SwePol	60
A.1	A schematic presentation of a converter	
۸ D	station of a LCC HVDC link	64
A.Z	station of a VSC HVDC link	64
D.1	Utilisation and unavailability for each HVDC	
	link, sorted by unavailable technical capacity	67
D.2	Utilisation and unavailability for each HVDC	
	link, sorted by transmission	68
D.3	Utilisation and unavailability for each HVDC	
	link, sorted by technical capacity not used .	68
E.1	Annual utilisation of all LCC HVDC links	69
E.2	Annual utilisation of all VSC HVDC links	69
E.3	Hours (%) limited due to seasonal causes .	70
E.4	Hours (%) limited by limitation origin and	
	type annually	70
E.5	Hours (%) limited by limitation origin and	
	type for each HVDC link	71
E.6	Hours (%) limited by limitation origin and	74
	type for each market connection	/1
E./	Hours (%) with planned maintenance by	
	primary cause for each HVDC link and the	
	links combined	72
F 8	Number of disturbance outages divided by	12
L.0	the number of HVDC links grouped by ori-	
	gin of event	73
E.9	Annual unavailable capacity due to distur-	
	bances outages by origin of event for all	
	HVDC links	73
E.10	Annual unavailable capacity due to main-	
	tenance outages by primary cause for all	
	HVDC links	75
E.11	Annual unavailable capacity due to cor-	
	rective maintenance outages for all HVDC	
	links, distributed by origin of event, and the	
	annual average number of them	75

entso

List of Tables

1	The annual utilisation (%) of HVDC links per market connection.	i
3.1 3.2	Main properties of the HVDC links Technical details of the HVDC links	3 4
4.1	Presents the annual utilisation (%) of HVDC links per market connection	12
4.2	Presents the annual unavailability (%) of HVDC links per market connection	13
4.3	Presents the annual technical capacity not used (%) of HVDC links per market connection	13
4.4	Baltic Cable monthly distribution of techni- cal capacity (E _{max})	15
4.5	COBRAcable monthly distribution of tech- nical capacity (E)	17
4.6	EstLink 1 monthly distribution of technical	10
4.7	EstLink 2 monthly distribution of technical	19
4.8	capacity (E _{max})	21
4.9	nical capacity (E _{max})	23
4.10	nical capacity (E _{max})	25
4.11	capacity (E _{max})	27
1 1 2	nical capacity (E _{max})	29
4.12	nical capacity (E _{max})	31
4.13	pacity (E _{max})	33
4.14	NordBalt monthly distribution of technical capacity (E _{max})	35

NordLink 1 monthly distribution of techni-	37
NordLink 2 max) is the internet in the internet internet in the internet i	20
NorNed monthly distribution of technical	39
capacity (E _{max})	41
technical capacity (E _{max})	43
technical capacity (E _{max})	45
Skagerrak 1 monthly distribution of techni- cal capacity (E _{max})	47
Skagerrak 2 monthly distribution of techni-	40
Skagerrak 3 monthly distribution of techni-	49
cal capacity (E _{max})	51
cal capacity (E _{max})	53
technical capacity (E _{max})	55
South West Link 2 monthly distribution of technical capacity (Emax)	56
Storebaelt monthly distribution of techni-	
SwePol monthly distribution of technical	57
capacity (E _{max})	59
The origin of event categories and subcate-	
codes	65
Annual unavailable capacity due to distur-	
bances outages by origin of event and sub- category for all HVDC links	74
	NordLink 1 monthly distribution of technical capacity (E _{max})

ENTSO-E HVDC Utilisation and Unavailability Statistics 2023

Page vi of 75

ENTSO-E | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e

This page is intentionally left blank.

1 Introduction and background

The ENTSO-E HVDC Utilisation and Unavailability Statistics 2023 presents the availability and utilisation of HVDC links connected to the Nordic and Baltic power system in 2023. This includes an overview of availability and utilisation for the HVDC links, information about disturbances and unavailability and individual presentations of the performance of each HVDC link. The report is made following the ENTSO-E Nordic and Baltic Guidelines for HVDC Statistics 2020 [1].

The first version of the HVDC statistics for utilisation and unavailability was published in 2011 as an addition to the Nordic Grid Disturbance and Fault Statistics 2010 [2]. At that time, the report covered only the Nordic power systems and presented 8 HVDC links. For the statistical year 2012, the HVAC Grid Disturbance Report and HVDC statistics were separated into two reports, which is the format of the reports today. In present time, this report includes 24 HVDC links connected to the Nordic and Baltic countries.

The trade of electricity between Russia and Finland ended on 14 May 2022 due to the geopolitical situation in Europe, as a result of Russia's invasion to Ukraine. The 400 kV connection between Finland and Russia is no longer available and the Vyborg link has not been a part of the HVDC statistics since 2022.

1.1 Scope

The ENTSO-E HVDC Utilisation and Unavailability Statistics 2023 presents a macro view of the availability and utilisation of each HVDC link, including disturbance, maintenance and other outage events as well as limitations. Limitations originating from maintenance work done in the AC grid are also included if they affect the power transfer of an HVDC connection. Furthermore, disturbance outages are more thoroughly examined than other events.

The scope of the Report is different from the CIGRE performance survey data [3], which focuses mainly on outages, faults and disturbances of the HVDC systems. CIGRE statistics give more details about the condition and performance of the HVDC assets themselves, including forced and scheduled outages, thyristor and transistor failure rates, commutation failures, and so on. On the other hand, DISTAC HVDC statistics cover more divergent performance and availability data and partly going deeper into classifi-

cation, consequences and outage reasons.

The HVDC WG of NordAM¹ and the DISTAC group have together developed the DISTAC HVDC outage and utilization data collection so that more detailed HVDC performance data analysis will be enabled in future. Together they also updated the HVDC performance data collection guidelines according to the new features.

1.2 Contact persons

Each country is represented by at least one contact person who is responsible for the statistical information of the corresponding country. The contact person can provide additional information concerning the HVDC availability and utilisation statistics. The relevant contact information is given in Appendix C.

¹The five Nordic Transmission System Operators (TSOs) founded a Nordic Asset Management Forum (NordAM) in 2009 with the main goal to increase cooperation, jointly influence, build up knowledge, create networks as well as carry out agreed surveys and development tasks within the field of Asset Management. The HVDC working group was established after a very successful task force work done in 2017.

2 Methods and definitions

The statistics is made according to the ENTSO-E HVDC Guidelines [1]. To compare the utilisation and availability between HVDC links, different ways of using them must understood. This chapter explains the utilisation and availability categories used in the report. The categories are illustrated in Figure 2.1.

Figure 2.1: The hierarchy of the availability and utilisation categories used in the HVDC statistics.

The technical capacity (E_{max}) of an HVDC link is the maximum energy that can be physically received through the HVDC link to the converter station, excluding all HVDC link losses, during a year. The technical capacity is divided into two categories: available technical capacity (E_A) and unavailable technical capacity (E_U) .

Transmitted energy (E_T) is the sum of transmitted energy in both directions of the HVDC link. Energy transferred to the north or east side of the HVDC link is called *transmission* north and east (E_{NE}) (previously export), and energy transferred to the south or west side of the HVDC link is called *transmission south and west* (E_{SW}) (previously import). It does not include *losses* (*L*) that is, the energy losses in any of the HVDC link components during transmission. It should be noted that these values are measurements and therefore considered factual.

The technical capacity not used (E_{TCNU}) is the residual energy after transmission, outages and limitations. This includes the capacity reserved in the capacity markets, both aFRR (CM_{aFRR}) and mFRR (CM_{mFRR}), but not activated, and the Capacity not needed (E_{NN}) by the electricity markets.

The unavailable technical capacity (E_U) is the part of the technical capacity (E_{max}) that could not be utilised. It has five subcategories: limitations (E_{Lim}) , disturbance outages (E_D) , unplanned maintenance (E_{UM}) , planned maintenance (E_{PM}) and other outages (E_{OO}) . An outage occurs when the HVDC link is fully disconnected from the system and the transfer capacity is reduced to zero. A limitation occurs when the capacity of the link has been reduced by between 0–100 %. Limitations and the outages are described in more detail below.

A *limitation* (E_{Lim}) is a condition when the transmission capacity of an HVDC link is limited that is, the power transmission capacity of the link is less than the rated power. The limitation is always motivated from a technical perspective, but not always concerning the link itself. The most common causes of limitations are:

- faults on any HVDC link component that do not cause a total outage;
- faults, congestions or outages in the AC grid causing a limitation in the transmission capacity of the link;
- seasonal variations on the transmission capacity.

Note that a limitation is counted for an hour only if there was transmission in the direction of the limitation and the sum of transmission and unavailable technical capacity is more than 90 % of the rated capacity. The reason to this is to only include limitations that have truly impacted the transmission of a HVDC link. Limitations that do not meet this requirement become *technical capacity not used* (E_{TCNU}) instead.

Disturbance outages (E_D) are total outages due to a fault on the HVDC link or in the AC-grid causing a total outage of the link. A disturbance outage occurs when the protection trips the link or, in rare cases, disconnected manually. Manual disconnection is usually categorised as unplanned maintenance.

Unplanned maintenance outages (E_{UM}) occurs when the link is manually disconnected for emergency or urgent repair. In general, unplanned maintenance are outages that cannot wait until the next scheduled maintenance.

Planned maintenance outages (E_{PM}) are total outages due to all technically motivated actions on the HVDC link or in the AC grid intended to retain an entity in, or restore it to, a state where it can perform its required function.

Other outages (E_{OO}) are outages due to any other reason. This could be, for example, black start or other tests or when the markets do not need the transmission capacity of the link and the link is disconnected.

Technical details of the HVDC links 3

Table 3.1 presents the main properties of the HVDC links Schematic presentations of the HVDC links and their conwhile Table 3.2 presents the technical properties of the HVDC lines.

verter stations, both for line-commutated converters (LCC) and voltage-source converters (VSC) are presented in Appendix A.

	-	-			
Commissioning	Market	HVDC	Rated power,	Parallel mono-	Binolar
year	connection	type	(MW)	(MW)	capacity
1994	Yes	LCC	600		
2019	Yes	VSC	700		
2006	Yes	VSC	350	1000	
2014	Yes	LCC	650	1000	
1989	Yes	LCC	400	1200	1200
2011	Yes	LCC	800	1200	1200
1995	Yes	LCC	600		
2008	Yes	LCC	357.5		715
1988	Yes	LCC	357.5		/15
2015	Yes	LCC	500		
2016	Yes	VSC	700		
2020	Yes	VSC	700	1400	1400
2020	Yes	VSC	700	1400	1400
2008	Yes	LCC	700		
2022	Yes	VSC	700	1400	1400
2022	Yes	VSC	700	1400	1400
1977	Yes	LCC	236		
1977	Yes	LCC	236	1000	1000
1993	Yes	LCC	478		
2014	Yes	VSC	682		
2021	Yes	VSC	600	1200	1200
2021	Yes	VSC	600	1200	1200
2010	Yes	LCC	600		
2000	Yes	LCC	600		
	Commissioning year 1994 2019 2006 2014 1989 2011 1995 2011 2008 2008 2020 2020 2020 2020 2020	Commissioning yearMarket connection1994Yes2019Yes2006Yes2014Yes2014Yes2014Yes2014Yes2015Yes2008Yes2015Yes2015Yes2016Yes2017Yes2018Yes2019Yes2015Yes2020Yes2021Yes2022Yes2023Yes1977Yes1977Yes1977Yes1977Yes1973Yes1974Yes1975Yes1975Yes1976Yes1977Yes1973Yes1974Yes1975Yes1975Yes2021Yes2021Yes2021Yes2021Yes2021Yes2021Yes2021Yes2021Yes2020Yes2021Yes2020Yes2020Yes2021Yes2020Yes2020Yes2021Yes2020Yes2020Yes2020Yes2020Yes2020Yes2020Yes2020Yes2021Yes<	Commissioning yearMarket converter consectionHVDC converter type1994YesLCC2019YesVSC2006YesVSC2014YesLCC2014YesLCC2014YesLCC2014YesLCC2015YesLCC2016YesLCC2017YesLCC2018YesLCC2020YesLCC2021YesVSC2022YesVSC2023YesVSC2024YesLCC1977YesLCC1977YesLCC1973YesLCC1974YesLCC1975YesLCC1976YesLCC1977YesLCC1973YesLCC1974YesLCC1975YesLCC1975YesLCC1974YesLCC1975YesLCC1975YesLCC1975YesLCC1975YesLCC1975YesLCC1975YesYes1975YesYes1975YesYes1975YesYes1975YesYes1975YesYes1975YesYes1975YesYes1975Yes <td< td=""><td>Commissioning yearMarket onnectionHVDC converter bypeRated power, monopolar (MW)1994YesLCC6002019YesVSC3502006YesVSC3502014YesLCC4002014YesLCC4002014YesLCC357.51989YesLCC357.52018YesLCC357.51988YesLCC357.51988YesLCC357.51988YesLCC357.52015YesLCC3502016YesLCC357.51988YesLCC3502015YesVSC7002020YesVSC7002021YesVSC7002022YesVSC7002023YesLCC2361993YesLCC2361993YesLCC4782014YesVSC6002021YesVSC6002021YesVSC6001993YesLCC6002021YesVSC6002021YesVSC6001993YesLCC6002021YesVSC6002022YesVSC6002033YesLCC6002044YesLCC6002054<t< td=""><td>Commissioning yearMarket connectionHVDC converter typeRated power, monopolar (MW)Parallel mono- polar capacity (MW)1994YesLCC6002019YesVSC7002006YesVSC350 65010002014YesLCC65012002015YesLCC400 80012001995YesLCC65012002011YesLCC357.5 198812002015YesLCC357.514002016YesVSC70014002020YesVSC70014002021YesVSC70014002022YesVSC70014002021YesLCC23610001977YesLCC23610001977YesLCC23610001973YesVSC66212002021YesVSC66012002021YesVSC66012002020YesLCC66012002021YesLCC66012002020YesLCC66012002021YesLCC66012002020YesLCC66012002021YesLCC66012002020YesLCC60012002021YesLCC</td></t<></td></td<>	Commissioning yearMarket onnectionHVDC converter bypeRated power, monopolar (MW)1994YesLCC6002019YesVSC3502006YesVSC3502014YesLCC4002014YesLCC4002014YesLCC357.51989YesLCC357.52018YesLCC357.51988YesLCC357.51988YesLCC357.51988YesLCC357.52015YesLCC3502016YesLCC357.51988YesLCC3502015YesVSC7002020YesVSC7002021YesVSC7002022YesVSC7002023YesLCC2361993YesLCC2361993YesLCC4782014YesVSC6002021YesVSC6002021YesVSC6001993YesLCC6002021YesVSC6002021YesVSC6001993YesLCC6002021YesVSC6002022YesVSC6002033YesLCC6002044YesLCC6002054 <t< td=""><td>Commissioning yearMarket connectionHVDC converter typeRated power, monopolar (MW)Parallel mono- polar capacity (MW)1994YesLCC6002019YesVSC7002006YesVSC350 65010002014YesLCC65012002015YesLCC400 80012001995YesLCC65012002011YesLCC357.5 198812002015YesLCC357.514002016YesVSC70014002020YesVSC70014002021YesVSC70014002022YesVSC70014002021YesLCC23610001977YesLCC23610001977YesLCC23610001973YesVSC66212002021YesVSC66012002021YesVSC66012002020YesLCC66012002021YesLCC66012002020YesLCC66012002021YesLCC66012002020YesLCC66012002021YesLCC66012002020YesLCC60012002021YesLCC</td></t<>	Commissioning yearMarket connectionHVDC converter typeRated power, monopolar (MW)Parallel mono- polar capacity (MW)1994YesLCC6002019YesVSC7002006YesVSC350 65010002014YesLCC65012002015YesLCC400 80012001995YesLCC65012002011YesLCC357.5 198812002015YesLCC357.514002016YesVSC70014002020YesVSC70014002021YesVSC70014002022YesVSC70014002021YesLCC23610001977YesLCC23610001977YesLCC23610001973YesVSC66212002021YesVSC66012002021YesVSC66012002020YesLCC66012002021YesLCC66012002020YesLCC66012002021YesLCC66012002020YesLCC66012002021YesLCC66012002020YesLCC60012002021YesLCC

Table 3.1: Main properties of the HVDC links.

¹ Konti-Skan bipole can export 740 MW and the import capacity is 715 MW. This counts in both directions since the reference-point is now on the importing side.

ENTSO-E HVDC Utilisation and Unavailability Statistics 2023

| 16 September 2024

	Physical	Length of	Length of	Length of DC	Length of DC
Link	(km)	(km)	(km)	(km)	connection (km)
Baltic Cable	262	250		12	
COBRAcable	325	325	650 (2×325)	0	
EstLink 1	105		210 (2×105)	-	
EstLink 2	171	157	- ()	14	
Fenno-Skan 1	233	200		33	
Fenno-Skan 2	299	196		103	
Kontek	160		160		
Konti-Skan 1	150	89		61	
Konti-Skan 2	150	89		61	
LitPol Link	< 1				< 1
NordBalt	450		2×450		
NordLink 1	623			53	
NordLink 2	623			53	
NorNed	580	580			
North Sea Link 1	720	720			
North Sea Link 2	720	720			
Skagerrak 1	212.5	133.6		78.5	
Skagerrak 2	211.4	132.9		78.5	
Skagerrak 3	212.9	134.4		78.5	
Skagerrak 4	226	226			
South West Link 1	252	192		60	
South West Link 2	252	192		60	
Storebaelt	57	57			
SwePol	254	254			

Table 3.2: Technical details of the HVDC links

4 Results

This chapter presents the utilisation and unavailability of all the HVDC links as well as individual presentations of each HVDC link connected to the Nordic and Baltic power system.

Section 4.1 provides an overview for each HVDC links in 2023. ar and Section 4.2 provides an overview of all links' summary for the years 2012–2023. Section 4.3 presents an overview of all market connections for 2012–2023. Section 4.4 presents the availability and utilisation of each HVDC link for the year 2023 as well as an annual overview of the utilisation and a trend of the utilisation and the number of outages for the years 2012–2023.

4.1 Overview for each HVDC link in 2023

Figure 4.1 presents the utilisation and unavailability (%) of each HVDC link in 2023. It should be noted that the usages of the links show big variations. Most links are market dependent, some are mostly used in one direction, and some are also used for technical reasons to control power flow for system stability according to agreements. Sorted views of Figure 4.1 are shown in Appendix D.

In 2023, 76.4 TWh of electric energy was transmitted through the Nordic and Baltic HVDC links, as seen in Figure 4.5. The total number of disturbance outages was 96, preventing 3.6 TWh of potential energy transmission, and 3.0 % of the total technical capacity (E_{max}).

Maintenance outages amounted to 4.45 TWh, (3.7 % of the total technical capacity) (E_{max}), and limitations reduced the transmission capacity by 3.41 TWh (2.9 % of the transmission capacity).

Figure 4.2 presents the percentage unavailable technical capacity ($E_{\rm U}$) of the annual technical capacity ($E_{\rm max}$) due to the outages and limitations. Figure 4.3 presents the number of all disturbance, maintenance and other outages. The explanations for the most notable unavailabilitys in 2023 are listed below. Further details are presented in Section 4.4.

Review of notable unavailable technical capacity 2023

The HVDC links with most unavailable technical capacity due to outages and limitations are Kontek (43 %), South West Link 1 (36 %), Skagerrak 2 (22 %), LitPol Link (14 %) and Skagerrak 4 (11 %). Kontek had a major cable fault on the German side. The cable was unavailable for 2 months at the end of the year. South West Link 1 had one major disturbance on DC yard and valve hall equipment which lasted several months and had a big impact on the availability of the link. Limitations are normal in Skagerrak 2 due to the careful operation of the link to maintain acceptable electrode current levels. The capacity of LitPol Link was limited in direction from Lithuania to Poland due to insufficient amount of downward balancing energy offers in the Lithuanian bidding zone. Skagerrak 4 has a long maintenance outage due to the replacement of the land cable in Denmark.

ENTSO-E HVDC Utilisation and Unavailability Statistics 2023

| 16 September 2024

Figure 4.1: Utilisation (%) by category for each HVDC link in 2023. The unavailable technical capacity (E_U) is the amount of technical capacity (E_{max}) not available due to limitations or outages. Transmission (E_T) is the amount of technical capacity (E_{max}) transmitted through the HVDC link. Technical capacity not used (E_{TCNU}) is the amount of energy that has not been transmitted or been unavailable due to limitations or outages.

Page 6 of 75

ENTSO-E HVDC Utilisation and Unavailability Statistics 2023

| 16 September 2024

Unavailable capacity (%) of each HVDC link in 2023

Figure 4.2: Unavailable technical capacity (%) for each HVDC link in 2023. The used unavailability categories are limitations, disturbance outages, unplanned and planned maintenances and other outages.

Figure 4.3: The number of disturbance outages, unplanned maintenance and planned maintenance outages and other outages for each link in 2023.

4.2 HVDC links: An overview of 2012–2023.

Figure 4.4 presents the annual utilisation (%) of all HVDC links and Figure 4.5 presents the annual utilisation (TWh) with all utilisation categories.

The percentage of unavailable technical capacity (E_U) in 2023 was on the normal 10-year average 10 %. The percentage of transmission (E_T) was 64 % which is high comared to 10 -year average (59 %).

Figure 4.5 shows annual utilisation of all HVDC links in TWhs. More HVDC links have been commissioned during the previous years such as South West Links and North Sea Links. Figure 4.6 presents the annual utilisation rate grouped by utilisation percentage for all HVDC links. Figure 4.7 presents the annual unavailable technical capacity (%) by unavailability category. Figure 4.8 presents the annual unavailability hours (%) for all HVDC links.

Annual utilisation (%) of all HVDC links

69 TWh 69 TWh 75 TWh 80 TWh 89 TWh 89 TWh 89 TWh 90 TWh 95 TWh 107 TWh108 TWh

Figure 4.4: The annual utilisation percentage of all HVDC links since 2012. The unavailable technical capacity (E_U) is the amount of technical capacity (E_{max}) not available due to limitations or outages. Transmission (E_T) is the amount of technical capacity (E_{max}) transmitted through the HVDC links. Technical capacity not used (E_{TCNUEM}) is the residual energy that has neither been transmitted nor been unavailable due to limitations or outages.

Figure 4.5: Annual utilisation (MWh) of all HVDC links. Transmission (E_T) is the amount of technical capacity (E_{max}) transmitted through the HVDC links. Limitations, disturbance outages, unplanned and planned maintenance outages and other outages form together the unavailable technical capacity (E_U). Technical capacity not used (E_{TCNUEM}) is the residual energy that has neither been transmitted nor been unavailable due to limitations or outages. The larger capacity increases in some years is due to new links being introduced to the report. The maximum technical capacity (E_{max}) is marginally higher on leap years due to one extra day of operation.

Annual utilisation rates grouped by utilisation percentage, all HVDC links

Figure 4.6: Annual utilisation rate grouped by utilisation percentage for all HVDC links. The HVDC links were utilised by more than 80 % of their respective maximum technical capacity 47.2 % of the time in 2023.

Annual unavailable capacity (%), all HVDC links

Figure 4.7: Unavailable technical capacity (%) by unavailability category for all HVDC links combined. The unavailability categories are limitations, disturbance outages, unplanned and planned maintenances and other outages.

ENTSO-E HVDC Utilisation and Unavailability Statistics 2023

| 16 September 2024

Figure 4.8: Annual unavailability hours (%) by unavailability category. The categories are limitation, unplanned or planned maintenance or a disturbance or other outage. The percentage is calculated by counting the number of hours with a limitation or outage and dividing it by the total number of hours in a year. It should be noted that any single hour can be affected by both an outage and a limitation. A higher value in the percentage of hours may indicate that the corresponding type of event has not fully disconnected the affected HVDC link from the system. A lower value may instead indicate that the corresponding event type has affected an HVDC link with a high rated capacity.

Markets connection: An overview of 2012–2023. 4.3

Figure 4.9 shows utilisation (%) by category for each market connection in 2023. The most utilised market connections in 2023 were SE4-PL (82 %), FI-EE (80 %), SE4-LT (77 %) and NO2-UK (76 %) as shown in Table 4.1. Five other market connections reached a utilisation rate of 60-70 % and five market connections were utilised between 50-60 % of the

maximum technical capacity. Lowest utilisation had DK2-DE (45 %). Annual utilisation (%), annual unavailability (%) and annual technical capacity not used (%) are presented in Table 4.1, Table 4.2, and Table 4.3 for different market connections.

Utilisation (%) by category for each market connection in 2023

Figure 4.9: Utilisation (%) by category for each market connection in 2023.

Table 4.1: Presents the annual utilisation (%) of HVDC links per market connection.

	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
DK1-NL								79.7%	50.6%	63.0%	65.1%	69.4%
DK2–DE	70.0%	70.1%	73.2%	74.8%	66.8%	66.3%	53.3%	68.6%	47.4%	71.4%	64.6%	44.9%
DK2-DK1	44.9%	54.4%	58.3%	70.1%	78.0%	63.7%	63.4%	58.3%	70.7%	57.2%	50.2%	50.1%
FI-EE	58.6%	54.9%	40.7%	56.8%	42.3%	29.2%	37.0%	46.6%	75.3%	76.9%	77.7%	80.4%
FI-SE3	53.8%	52.5%	76.2%	75.8%	77.7%	70.2%	71.8%	81.2%	84.6%	68.0%	71.9%	60.5%
LT-PL					33.5%	46.7%	53.5%	61.5%	58.4%	54.8%	61.5%	58.0%
NO2–DE										44.0%	57.5%	63.5%
NO2-DK1	67.5%	60.7%	54.5%	54.0%	60.6%	54.1%	52.7%	46.2%	62.3%	67.0%	55.2%	58.8%
NO2–NL	89.4%	71.6%	90.5%	93.9%	72.5%	82.8%	68.3%	61.3%	76.7%	62.7%	35.0%	56.5%
NO2–UK											50.8%	76.0%
RU-FI	33.8%	35.6%	25.4%	29.1%	45.8%	49.8%	66.7%	61.5%	23.1%	71.7%		
SE3-DK1	55.9%	40.5%	49.3%	48.7%	58.8%	51.8%	52.7%	50.1%	57.3%	49.0%	65.8%	68.3%
SE3–SE4												50.4%
SE4–DE	59.5%	32.1%	47.5%	30.5%	43.3%	45.6%	33.2%	36.0%	54.9%	47.9%	61.8%	65.1%
SE4–LT					43.6%	51.5%	50.5%	62.9%	76.2%	60.4%	79.9%	77.0%
SE4-PL	52.3%	33.9%	60.9%	67.2%	55.8%	62.3%	66.1%	62.1%	72.1%	69.3%	76.3%	81.8%
Grand Total	56.8%	49.9%	56.1%	58.2%	57.2%	55.5%	56.5%	58.3%	61.6%	62.3%	61.6%	64.2%

	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
DK1-NL								5.1%	29.3%	10.8%	10.6%	2.8%
DK2–DE	5.8%	3.9%	3.5%	5.2%	10.4%	14.3%	25.9%	3.8%	30.0%	5.0%	11.5%	42.9%
DK2-DK1	2.9%	9.9%	4.6%	2.4%	2.8%	1.6%	2.2%	2.5%	0.3%	1.4%	4.4%	1.3%
FI-EE	2.6%	5.0%	14.7%	5.8%	3.6%	0.6%	3.6%	2.2%	2.7%	1.5%	3.4%	2.9%
FI-SE3	27.3%	17.2%	5.4%	9.5%	1.5%	1.2%	1.1%	4.7%	0.9%	13.1%	1.3%	5.3%
LT-PL					14.0%	10.1%	6.1%	3.6%	8.6%	13.4%	3.2%	14.3%
NO2–DE										9.8%	4.5%	3.5%
NO2-DK1	2.4%	7.9%	10.5%	6.5%	4.8%	18.0%	12.7%	27.0%	23.6%	8.2%	13.9%	12.1%
NO2–NL	3.4%	19.3%	4.5%	4.2%	8.1%	8.4%	13.8%	13.5%	16.9%	27.1%	49.2%	15.6%
NO2–UK											11.9%	6.6%
RU-FI	9.8%	1.3%	0.4%	0.0%	1.5%	2.3%	5.2%	5.4%	11.5%	8.1%		
SE3-DK1	4.7%	10.7%	16.1%	16.7%	5.5%	6.7%	4.3%	15.8%	16.7%	27.7%	12.7%	8.4%
SE3–SE4												20.9%
SE4–DE	22.1%	18.1%	6.6%	12.5%	20.4%	27.1%	36.3%	26.2%	18.7%	9.8%	3.8%	2.9%
SE4–LT					25.7%	16.5%	22.0%	7.6%	5.5%	5.8%	6.5%	7.5%
SE4-PL	0.2%	3.3%	7.1%	7.3%	15.3%	5.9%	4.2%	14.0%	12.8%	8.9%	12.6%	4.8%
Grand Total	9.8%	9.9%	7.2%	6.7%	7.8%	8.9%	10.3%	11.2%	13.5%	10.4%	10.4%	9.6%

Table 4.2: Presents the annual unavailability (%) of HVDC links per market connection.

Table 4.3: Presents the annual technical capacity not used (%) of HVDC links per market connection.

	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
DK1-NL								15.2%	20.1%	26.3%	24.3%	27.8%
DK2–DE	24.3%	26.1%	23.3%	20.1%	22.8%	19.4%	20.7%	27.7%	22.6%	23.6%	23.9%	12.2%
DK2–DK1	52.1%	35.6%	37.1%	27.5%	19.3%	34.7%	34.5%	39.2%	29.1%	41.3%	45.4%	48.5%
FI-EE	38.8%	40.0%	44.7%	37.3%	54.1%	70.2%	59.3%	51.2%	22.0%	21.6%	18.8%	16.7%
FI-SE3	18.9%	30.3%	18.4%	14.8%	20.7%	28.6%	27.1%	14.1%	14.6%	18.8%	26.8%	34.2%
LT-PL					52.5%	43.2%	40.3%	34.9%	33.0%	31.8%	35.4%	27.7%
NO2-DE										46.2%	37.9%	33.0%
NO2-DK1	30.1%	31.4%	34.9%	39.5%	34.6%	27.9%	34.6%	26.8%	14.2%	24.7%	30.8%	29.1%
NO2–NL	7.2%	9.1%	5.0%	1.9%	19.4%	8.8%	17.9%	25.2%	6.4%	10.2%	15.8%	27.8%
NO2–UK											37.3%	17.4%
RU—FI	56.5%	63.1%	74.2%	70.9%	52.7%	47.9%	28.2%	33.1%	65.3%	20.3%		
SE3-DK1	39.3%	48.8%	34.6%	34.6%	35.8%	41.4%	43.0%	34.1%	26.0%	23.3%	21.5%	23.3%
SE3–SE4												28.8%
SE4–DE	18.4%	49.8%	45.9%	57.0%	36.3%	27.4%	30.6%	37.8%	26.4%	42.3%	34.4%	32.0%
SE4–LT					30.7%	32.1%	27.6%	29.4%	18.3%	33.8%	13.6%	15.5%
SE4–PL	47.5%	62.8%	32.0%	25.5%	28.9%	31.8%	29.7%	23.9%	15.1%	21.8%	11.0%	13.5%
Grand Total	33.4%	40.2%	36.8%	35.1%	35.0%	35.5%	33.2%	30.5%	24.9%	27.3%	28.0%	26.2%

4.4 Individual presentations of each HVDC link

This section presents the performance of each HVDC link. Figure 4.10 presents the geographical location of each HVDC link. The categories used in the following presentations of each separate HVDC link are presented and defined in Chapter 2.

technical capacity E_{max} higher than the E_{max} stated in the diagram. This is due to power flows that may momentarily be higher than rated technical capacity of the links. Other times, when power flow is below the rated technical capacity (and there is no limitation reported), the difference is registered in the category "technical capacity not used".

Note that the sums in the tables for each link may show a

Figure 4.10: A map of the bidding zones and the 24 HVDC links included in this report.

4.4.1 Baltic Cable

Figure 4.11 presents the availability and utilisation of Baltic Cable for 2023 and Table 4.4 presents the numerical values behind it. Baltic Cable is connected between southern Sweden (bidding zone SE4) and Germany (bidding zone DE-TenneT). The operations started in 1994 and the transmission capacity is 600 MW. In 2023, Baltic Cable had an available technical capacity of 97 %. The technical capacity not used was 32 %. In total, 3.1 TWh (59 % of the technical capacity) was transmitted south (SE4 \rightarrow DE-TenneT) and 0.4 TWh (7 % of the technical capacity) was transmitted north (DE-TenneT \rightarrow SE4). The main annual maintenance for the Baltic Cable took place during 10 days in September.

Figure 4.11: Monthly percentage allocation of utilisation by category for Baltic Cable in 2023.

Table 4.4: Monthly allocation of technical capacity (E_{max}) for The Baltic Cable in 2023. Note that losses are not included in the technical capacity (E_{max}) , as is shown in Figure 2.1.

Monthly utilisation of B-lite C-b-lite V-b-betwee version version version of M-max Mar Apr May Jun Jul Aug Sept Oct Nov Dec Total % tot Technical capacity not used, GWh 1560 139.1 176.8 95.8 196.6 293.4 81.3 94.2 48.5 52.9 176.7 21.3 172.51 32.0 Transmission N&E, GWh 47.0 1.6 29.2 15.5 22.1 19.0 33.4 9.3 5.7 13.9 16.9 140.3 353.9 6.6 Transmission S&W, GWh 254.6 272.0 251.0 330.5 238.9 128.4 341.3 342.9 253.0 390.5 246.8 103.3 315.31 55.5 Limitations, GWh 1.0 1.5 11.0 1.3.5 1.3.5 1.3.5 1.3.5 1.3.5 1.3.5 1.3.5 1.3.5 1.3.5 1.3.5 1.3.5 1.3.5 1.3.5 1.3.5														
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total	% total
Technical capacity not used, GWh	156.0	139.1	176.8	95.8	196.6	293.4	81.3	94.2	48.5	52.9	176.7	213.9	1725.1	32.0%
Transmission N&E, GWh	47.0	1.6	29.2	15.5	22.1	19.0	33.4	9.3	5.7	13.9	16.9	140.3	353.9	6.6%
Transmission S&W, GWh	254.6	272.0	251.0	330.5	238.9	128.4	341.3	342.9	253.0	390.5	246.8	103.3	3153.1	58.5%
Limitations, GWh	-	-	-	1.0	-	-	1.5	11.0	-	-	-	-	13.5	0.3%
Disturbance outages, GWh	-	0.6	-	-	-	-	-	0.2	-	-	-	-	0.8	0.0%
Unplanned maintenance., GWh	-	-	-	-	-	-	-	-	-	0.9	-	-	0.9	0.0%
Planned maintenance, GWh	-	-	-	-	-	2.0	-	-	135.6	-	2.4	-	140.0	2.6%
Other outages, GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total, GWh	457.6	413.3	456.9	442.8	457.6	442.8	457.6	457.6	442.8	458.2	442.8	457.6	5387.4	100.0%
Losses SW, GWh	6.6	8.2	9.2	8.0	6.5	6.4	8.4	8.5	6.3	9.6	8.0	4.5	90.2	1.7%
Losses NE, GWh	1.1	-	0.7	0.4	0.5	0.5	0.8	0.2	0.1	0.3	0.5	3.1	8.2	0.2%

Figure 4.12 presents the annual utilisation of Baltic Cable per utilisation and unavailability category for the years 2012–2023.

Figure 4.13 presents the percentage of hours of a year Baltic Cable has been affected by either a limitation, a dis-

turbance outage, an unplanned or planned maintenance outage or other outage annually during the years 2012– 2023. Figure 4.14 presents the annual number of disturbance outages, unplanned and planned maintenances and other outages during the years 2012–2023.

Figure 4.12: Annual utilisation of Baltic Cable per the utilisation and unavailability categories for the years 2012–2023.

Number of outages annually for Baltic Cable

Figure 4.13: Percentage of hours Baltic Cable has been affected by either a limitation or an outage annually since 2012. The percentage is calculated by counting the number of hours with a limitation or outage and dividing it by the total number of hours in a year. It should be noted that any single hour can be affected by both an outage and a limitation.

Figure 4.14: The annual number of disturbances, unplanned and planned maintenance outages and other outages for Baltic Cable for the years 2012–2023. Baltic cable has not had any other outages during the years 2012–2023.

entso

4.4.2 COBRAcable

Figure 4.15 presents the availability and utilisation of COBRAcable for 2023 and Table 4.5 presents the numerical values behind it. COBRAcable has been in operation since 2019. In Denmark (bidding zone DK1) it is connected to Endrup substation and in Netherlands to Eemshaven (bidding zone APX NL). COBRAcable was commissioned 5 November and has a transmission capacity of 700 MW.

In 2023, COBRAcable had an available technical capacity of 97 %. The technical capacity not used was 28 %. Totally, 25 TWh (42 % of the technical capacity) was transmitted south to the Netherlands (DK1 \rightarrow APX NL) and 1.7 TWh (28 % of the technical capacity) was transmitted north to Denmark (APX NL \rightarrow DK1).

COBRAcable annual maintenance lasted 5 days in October and November. Furthermore there were three minor maintenance outages in 2023. One were reconstruction after cable repair in December 2022 and the two others were work on busbars in Eemshaven. There were two minor disturbances outages lasting a few hours, which was caused by fault in the control system, and a fault in the cooling system.

Figure 4.15: Monthly percentage allocation of utilisation by category for COBRAcable in 2023.

Table 4.5: Monthly allocation of technical capacity (E_{max}) for COBRAcable in 2023. Note that losses are not included in the technical capacity (E_{max}), as is shown in Figure 2.1.

Monthly utilisation of COBRAcable (South & West direction DK1 \rightarrow NL)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total	% total
Technical capacity not used, GWh	126.4	91.3	135.2	160.9	127.4	149.9	154.7	157.2	152.5	108.4	199.3	142.3	1705.6	27.8%
Transmission N&E, GWh	97.2	84.1	159.3	104.4	182.9	227.3	132.6	218.6	139.6	73.8	101.5	182.9	1704.2	27.8%
Transmission S&W, GWh	297.2	286.7	178.6	236.2	210.3	119.8	233.4	142.5	198.6	304.5	149.9	191.0	2548.8	41.6%
Limitations, GWh	-	-	36.9	2.5	0.2	-	-	2.5	13.2	5.5	6.1	4.6	71.6	1.2%
Disturbance outages, GWh	-	2.7	-	-	-	-	-	-	-	-	2.4	-	5.1	0.1%
Unplanned maintenance., GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Planned maintenance, GWh	-	5.6	10.0	-	-	7.0	-	-	-	29.4	44.8	-	96.8	1.6%
Other outages, GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total, GWh	520.8	470.4	520.1	504.0	520.8	504.0	520.8	520.8	504.0	521.5	504.0	520.8	6132.0	100.0%
Losses SW, GWh	8.5	8.2	4.5	6.7	6.1	3.4	6.8	4.2	5.7	8.8	4.3	5.5	72.6	1.2%
Losses NE, GWh	2.3	2.0	3.8	2.4	4.4	5.5	3.2	5.4	3.4	1.8	2.3	4.4	40.9	0.7%

Figure 4.16 presents the annual utilisation of COBRAcable per utilisation and unavailability category for the years 2019–2023.

Figure 4.17 presents the percentage of hours of a year COBRAcable has been affected by either a limitation, a disturbance outage, an unplanned or planned maintenance

outage or other outage annually during the years 2019–2023. Figure 4.18 presents the annual number of disturbance outages, unplanned and planned maintenances and other outages during the years 2019–2023.

Data for 2019 does not cover the whole year because COBRAcable was commissioned in September 2019.

Figure 4.16: Annual utilisation of COBRAcable per the utilisation and unavailability categories for the years 2019–2023.

Percentage of unavailable hours annually per category for COBRAcable

Figure 4.17: Percentage of hours COBRAcable has been affected by either a limitation or an outage annually since 2019. The percentage is calculated by counting the number of hours with a limitation or outage and dividing it by the total number of hours in a year. It should be noted that any single hour can be affected by both an outage and a limitation.

Number of outages annually for COBRAcable

Figure 4.18: The annual number of disturbances, unplanned and planned maintenance outages and other outages for COBRAcable for the years 2019–2023.

4.4.3 EstLink 1

Figure 4.19 presents the availability and utilisation of Est-Link 1 for 2023 and Table 4.6 presents the numerical values behind it. EstLink 1 has been in operation since 2006 and is the first HVDC connection between Finland and Estonia. In Finland, it is connected to Espoo substation (bidding zone FI) and in Estonia, it is connected to Harku substation (bidding zone EE). The transmission capacity of EstLink 1 is 350 MW.

In 2023, EstLink 1 had an available technical capacity of 98 %. The technical capacity not used was 29 % because EstLink 2 is prioritised due to its lower transmission losses and because EstLink 1 is often used in Automatic Fre-

quency Control Mode. Totally, 2.1 TWh (69% of the technical capacity) was transmitted south (FI \rightarrow EE) and less than 0.02 TWh (0.7% of the technical capacity) was transmitted north (EE \rightarrow FI).

EstLink 1 had 5 days annual maintenance, 6 days outage for addition of diesel generator to auxiliary power system in Espoo and another 1.5 days for repairs in Harku. In June-July EstLink 1 tripped five times due to fire detection system malfunction in Harku, until the root-cause was cleared and repaired. Each time, power transmission was restored rapidly within 2-3 hours.

Figure 4.19: Monthly percentage allocation of utilisation by category for EstLink 1 in 2023.

Table 4.6: Monthly allocation of technical capacity (E_{max}) for EstLink 1 in 2023.

Monthly utilisation of EstLink 1 (South & West direction $FI \rightarrow EE$)

	-	\				. ,								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total	% total
Technical capacity not used, GWh	100.7	58.8	121.4	157.6	56.2	30.2	35.1	70.1	30.5	26.2	57.1	139.5	883.3	28.6%
Transmission N&E, GWh	0.1	0.1	1.3	3.3	0.1	0.1	-	9.4	0.9	0.4	1.1	4.8	21.7	0.7%
Transmission S&W, GWh	160.9	177.8	138.1	45.3	205.7	222.8	224.6	169.7	223.2	236.7	195.6	114.9	2115.5	68.6%
Limitations, GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Disturbance outages, GWh	-	-	-	-	-	1.3	2.8	-	-	-	-	-	4.1	0.1%
Unplanned maintenance., GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Planned maintenance, GWh	-	-	-	45.9	-	-	-	12.5	-	-	-	-	58.4	1.9%
Other outages, GWh	-	-	-	-	-	-	-	-	-	-	-	1.7	1.7	0.1%
Total, GWh	261.7	236.7	260.9	252.2	262.0	254.4	262.5	261.8	254.6	263.4	253.8	260.9	3084.8	100.0%
Losses SW, GWh	8.8	9.3	7.7	3.0	11.0	12.0	12.1	9.3	12.1	12.6	10.4	6.5	114.7	3.7%
Losses NE, GWh	-	-	0.1	0.3	-	-	-	0.5	0.1	-	0.1	0.4	1.5	0.0%

Figure 4.20 presents the annual utilisation of EstLink 1 per utilisation and unavailability category for the years 2012–2023.

Figure 4.21 presents the percentage of hours of a year EstLink 1 has been affected by either a limitation, a dis-

turbance outage, an unplanned or planned maintenance outage or other outage annually during the years 2012– 2023. Figure 4.22 presents the annual number of disturbance outages, unplanned and planned maintenances and other outages during the years 2012–2023.

Figure 4.20: Annual utilisation of EstLink 1 per the utilisation and unavailability categories for the years 2012–2023.

Percentage of unavailable hours annually per category for EstLink 1

Figure 4.21: Percentage of hours EstLink 1 has been affected by either a limitation or an outage annually since 2012. The percentage is calculated by counting the number of hours with a limitation or outage and dividing it by the total number of hours in a year. It should be noted that any single hour can be affected by both an outage

Figure 4.22: The annual number of disturbances, unplanned and planned maintenance outages and other outages for EstLink 1 for the years 2012–2023.

and a limitation.

4.4.4 EstLink 2

Figure 4.23 presents the availability and utilisation of Est-Link 2 for 2023 and Table 4.7 presents the numerical values behind it. EstLink 2 was commissioned in February 2014 and is the second HVDC connection between Finland and Estonia. In Finland, it is connected to Anttila substation (bidding zone FI) and in Estonia, it is connected to Püssi substation (bidding zone EE). The transmission capacity of EstLink 2 is 650 MW.

In 2023, EstLink 2 had an available technical capacity of 97 %. The technical capacity not used was 10 %. Totally, 4.9 TWh (86 % of the technical capacity) was transmitted south (FI \rightarrow EE) and only 0.03 TWh (0.6 % of the technical capacity) was transmitted north (EE \rightarrow FI).

In June, EstLink 2 had one extended 11-day annual maintenance mainly due to sea cable cooling improvement and Anttila converter transformer periodic maintenance and improvement work. In November, another one workday outage was for corrective work on valve cooling system in Anttila.

In 2023, EstLink 2 tripped once and prevented startup once due to valve cooling system pumps and alarms in Anttila. From the end of September to the end of the year (14 weeks), the transmission capacity was reduced by 15 MW based on cable lifetime endurance risks caused by high seacable conductor temperature (hot-spot) near to the Finnish shore.

Table 4.7: Monthly allocation of technical capacity (E_{max}) for EstLink 2 in 2023. Note that losses are not included in the technical capacity (E_{max}), as is shown in Figure 2.1.

		•				,								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total	% total
Technical capacity not used, GWh	62.7	17.3	84.2	153.3	16.8	7.8	4.5	51.5	15.0	12.9	34.4	128.8	589.1	10.3%
Transmission N&E, GWh	2.1	-	0.6	8.5	-	-	-	12.2	-	-	3.1	6.7	33.3	0.6%
Transmission S&W, GWh	422.3	423.5	401.0	307.1	469.3	295.8	484.3	424.0	455.6	465.5	418.8	344.8	4912.0	85.8%
Limitations, GWh	-	-	-	-	1.2	-	-	-	0.9	5.9	5.0	3.4	16.4	0.3%
Disturbance outages, GWh	-	-	-	-	-	-	-	-	-	-	1.1	-	1.1	0.0%
Unplanned maintenance., GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Planned maintenance, GWh	-	-	-	-	-	167.4	-	-	-	-	5.7	-	173.1	3.0%
Other outages, GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total, GWh	487.1	440.8	485.8	469.0	487.3	471.0	488.8	487.7	471.5	484.3	468.0	483.6	5724.9	100.0%
Losses SW, GWh	9.1	9.4	8.6	6.2	10.5	6.7	11.0	9.6	10.3	10.2	9.1	7.3	108.2	1.9%
Losses NE, GWh	-	-	-	0.2	-	-	-	0.2	-	-	0.1	0.1	0.6	0.0%

Figure 4.24 presents the annual utilisation of EstLink 2 per utilisation and unavailability category for the years 2014–2023.

Figure 4.25 presents the percentage of hours of a year EstLink 2 has been affected by either a limitation, a dis-

turbance outage, an unplanned or planned maintenance outage or other outage annually during the years 2014– 2023. Figure 4.26 presents the annual number of disturbance outages, unplanned and planned maintenances and other outages during the years 2014–2023.

Figure 4.24: Annual utilisation of EstLink 2 per the utilisation and unavailability categories for the years 2014–2023.

14 12 10 6 4 7 4 2 0 2014 2015 2015 2016 2017 2018 2019 2019 2019 2020 2021 2022 2023 Planned maintenances

Number of outages annually for EstLink 2

Figure 4.25: Percentage of hours EstLink 2 has been affected by either a limitation or an outage annually since 2014. The percentage is calculated by counting the number of hours with a limitation or outage and dividing it by the total number of hours in a year. It should be noted that any single hour can be affected by both an outage and a limitation.

Figure 4.26: The annual number of disturbances, unplanned and planned maintenance outages and other outages for EstLink 2 for the years 2014–2023. EstLink 2 had neither unplanned maintenance nor other outages during this period.

4.4.5 Fenno-Skan 1

Figure 4.27 presents the availability and utilisation of Fenno-Skan 1 for 2023 and Table 4.8 presents the numerical values behind it. Fenno-Skan 1 has been in operation since 1989 and is the first HVDC connection between Finland and Sweden. In Finland (bidding zone FI), Fenno-Skan 1 is connected to Rauma and in Sweden to Dannebo (bidding zone SE3). The transmission capacity of Fenno Skan 1 is 400 MW.

In 2023, Fenno Skan 1 had an available technical capacity of 90 %. The technical capacity not used was 9 %. Totally, 0.08 TWh (2.4 % of the technical capacity) was transmitted west (FI \rightarrow SE3) and 2.7 TWh (78 % of the technical capacity) was transmitted east (SE3 \rightarrow FI).

Fenno Skan 1 had a 12-day annual maintenance outage for repair of transformer leakages in March and a 7 day annual maintenance outage at the end of September (of which one day was for operator training). FS1 tripped 5 times in 2023 due to different reasons. One of them was long (23 days) caused by internal damage in one of the transformer units, which had to be replaced by the spare transformer in Rauma.

It should be noted that Fenno skan 1 and 2 are sometimes operated at equivalent transmission levels but with reversed directions to keep the temperature of Fenno kan 1 at adequate levels. The utilisation is still regarded as transmission even though the resulting net exchange between Finland and Sweden is zero.

Table 4.8: Monthly allocation of technical capacity (E_{max}) for Fenno-Skan 1 in 2023. Note that losses are not included in the technical capacity (E_{max}), as is shown in Figure 2.1.

						•••••	,							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total	% total
Technical capacity not used, GWh	23.4	16.1	15.1	54.1	60.9	50.7	15.8	2.1	16.3	24.8	17.8	13.8	310.8	8.9%
Transmission N&E, GWh	274.6	253.1	173.4	227.1	227.2	237.3	247.3	95.3	211.8	261.3	229.5	280.7	2718.7	77.5%
Transmission S&W, GWh	-	-	0.7	5.0	9.5	-	11.3	-	11.9	5.2	41.1	-	84.7	2.4%
Limitations, GWh	-	-	-	-	=	-	-	-	-	0.6	-	-	0.6	0.0%
Disturbance outages, GWh	-	-	-	1.8	-	-	23.3	200.2	2.4	-	-	1.1	228.8	6.5%
Unplanned maintenance., GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Planned maintenance, GWh	-	-	108.1	-	-	-	-	-	45.6	6.3	-	2.4	162.4	4.6%
Other outages, GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total, GWh	298.0	269.2	297.3	288.0	297.6	288.0	297.7	297.6	288.1	298.2	288.4	298.0	3506.0	100.0%
Losses SW, GWh	-	-	-	0.2	0.3	-	0.4	-	0.4	0.2	1.2	-	2.6	0.1%
Losses NE, GWh	7.1	6.5	4.3	5.4	5.3	5.6	6.8	2.6	5.7	7.0	6.0	7.1	69.3	2.0%

Figure 4.28 presents the annual utilisation of Fenno-Skan 1 per utilisation and unavailability category for the years 2012–2023.

Figure 4.29 presents the percentage of hours of a year Fenno-Skan 1 has been affected by either a limitation,

a disturbance outage, an unplanned or planned maintenance outage or other outage annually during the years 2012–2023. Figure 4.30 presents the annual number of disturbance outages, unplanned and planned maintenances and other outages during the years 2012–2023.

Figure 4.28: Annual utilisation of Fenno-Skan 1 per the utilisation and unavailability categories for the years 2012–2023.

Number of outages annually for Fenno-Skan 1

Figure 4.29: Percentage of hours Fenno-Skan 1 has been affected by either a limitation or an outage annually since 2012. The percentage is calculated by counting the number of hours with a limitation or outage and dividing it by the total number of hours in a year. It should be noted that any single hour can be affected by both an outage and a limitation.

Figure 4.30: The annual number of disturbances, unplanned and planned maintenance outages and other outages for Fenno-Skan 1 during 2012–2023. Fenno-Skan 1 had no other outages during the years 2012–2023.

4.4.6 Fenno-Skan 2

Figure 4.31 presents the availability and utilisation of Fenno-Skan 2 for 2023 and Table 4.9 presents the numerical values behind it. Fenno-Skan 2 has been in operation since 2011 and is the second HVDC connection between Finland and Sweden. In Finland (bidding zone FI) Fenno-Skan 2 is connected to Rauma and in Sweden to Finnböle (bidding zone SE3). The transmission capacity of Fenno-Skan 2 is 800 MW.

In 2023, Fenno Skan 2 had an available technical capacity of 99 %. The technical capacity not used was 47 %. Totally, 2.1 TWh (31 % of the technical capacity) was transmitted east (SE3 \rightarrow FI) and 1.4 TWh (20 % of the technical capacity) was transmitted west (FI \rightarrow SE3).

maintenance (neutral cable damage), one short, planned outage for testing preparations and a 6-day annual maintenance. Fenno Skan tripped three times in 2023, once due to excavator working error, which damaged one of the four parallel neutral cables at Rauma station, once due to loss of auxiliary feeder on Swedish side and once due to DC saturation, which 30 seconds later led to a higher-risk event of a bipolar trip.

It should be noted that Fenno Skan 1 and 2 are sometimes operated at equivalent transmission levels but with reversed directions to keep the temperature of Fenno kan 1 at adequate levels. The utilisation is still regarded as transmission even though the resulting net exchange between Finland and Sweden is zero.

Monthly utilisation (%) of Fenno-Skan 2 Rated capacity 800 MW E_{max} 7.0 TWh Total 2023 100% % Technical capacity not used 30% 34% 38% % Transmission N&E [SE3→FI] 39% 80% 43% 47% 48% 48% 50% 55% % Transmission S&W [FI→SE3] 57% 59% 62% % Limitations 60% % of E_{max} % Disturbance outages % Unplanned maintenance 32% 38% 57% 40% 53% 8% 23% % Planned maintenance 31% 42% 33% % Other outages 49% 26% 15% 38% 20% 30% 37% 279 21% 20% 18% 15% 12% 13% 12% 0% Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Total

Fenno Skan 2 had one unplanned outage for corrective

Figure 4.31: Monthly percentage allocation of utilisation by category for Fenno-Skan 2 in 2023.

Table 4.9: Monthly allocation of technical capacity (E_{max}) for Fenno-Skan 2 in 2023. Note that losses are not included in the technical capacity (E_{max}), as is shown in Figure 2.1.

Monthly utilisation of Fenno-Skan 2	(South & West direction $FI \rightarrow SE3$)
-------------------------------------	--

,		•					,							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total	% total
Technical capacity not used, GWh	300.3	231.2	286.5	330.6	329.4	339.2	367.3	283.4	224.2	224.3	196.0	177.6	3289.9	46.9%
Transmission N&E, GWh	134.8	224.0	198.6	45.2	16.8	24.3	155.6	291.9	217.3	188.8	305.7	341.2	2144.3	30.6%
Transmission S&W, GWh	158.6	82.5	109.3	175.4	228.7	212.5	69.1	20.0	120.2	87.8	72.0	76.4	1412.7	20.2%
Limitations, GWh	-	-	-	0.1	7.0	-	0.2	-	-	2.3	0.3	-	9.9	0.1%
Disturbance outages, GWh	-	-	-	24.7	-	-	3.0	-	-	-	2.1	-	29.7	0.4%
Unplanned maintenance., GWh	-	-	-	-	13.3	-	-	-	-	-	-	-	13.3	0.2%
Planned maintenance, GWh	1.5	-	-	-	-	-	-	-	14.4	92.7	-	-	108.6	1.5%
Other outages, GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total, GWh	595.2	537.7	594.4	576.0	595.2	576.0	595.2	595.3	576.1	596.0	576.0	595.3	7008.5	100.0%
Losses SW, GWh	2.9	1.4	2.2	3.2	4.1	3.8	1.1	0.4	2.6	1.7	1.4	1.4	26.1	0.4%
Losses NE, GWh	2.5	4.4	4.0	0.7	0.3	0.4	2.8	6.7	4.8	3.7	6.6	7.4	44.4	0.6%

Figure 4.32 presents the annual utilisation of Fenno-Skan 2 per utilisation and unavailability category for the years 2012–2023.

Figure 4.33 presents the percentage of hours of a year Fenno-Skan 2 has been affected by either a limitation,

a disturbance outage, an unplanned or planned maintenance outage or other outage annually during the years 2012–2023. Figure 4.34 presents the annual number of disturbance outages, unplanned and planned maintenances and other outages during the years 2012–2023.

Figure 4.32: Annual utilisation of Fenno-Skan 2 per the utilisation and unavailability categories for the years 2012–2023.

Number of outages annually for Fenno-Skan 2

Figure 4.33: Percentage of hours Fenno-Skan 2 has been affected by either a limitation or an outage annually since 2012. The percentage is calculated by counting the number of hours with a limitation or outage and dividing it by the total number of hours in a year. It should be noted that any single hour can be affected by both an outage and a limitation.

Figure 4.34: The annual number of disturbances, unplanned and planned maintenance outages and other outages for Fenno-Skan 2 for the years 2012–2023.

4.4.7 Kontek

Figure 4.35 presents the availability and utilisation of Kontek for 2023 and Table 4.10 presents the numerical values behind it. Kontek has been in operation since 1995. In Denmark it is connected to Bjaeverskov (bidding zone DK2) and in Germany to Bentwisch (bidding zone DE-50Hertz). The transmission capacity of Kontek is 600 MW.

In 2023, Kontek had an available technical capacity of 57 %. The technical capacity not used was 12 %. Totally, 2.0 TWh (38 % of the technical capacity) was transmitted north to Denmark.

Annual maintenance for Kontek was performed during an-

other maintenance outage where the pole cable was excanged in Germany which lasted 47 days. Furthermore there were three planned and one unplanned maintenance outages, one were cleaning of a cable terminal after a flashover, another one were preparation to exchange 400 kV land cable, and the last two were weed removal in Bentwisch.

There were two disturbance outages. One outage were due to flashovers at a cable terminal and one was caused by fault on the DC electrode cable. For the first two and a half month of 2023, Kontek was limited due to lack of spare parts after a circuit breaker fault.

Figure 4.35: Monthly percentage allocation of utilisation by category for Kontek in 2023.

Monthly	utilisation	of Kontek	(South &	West	direction	$DK2 \rightarrow DF$
WIGHTUN	utilisation	OI KOIILEK	(JUULII C	vvcst	unection	

wonting achieved of ite				ancou		. , , , ,								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total	% total
Technical capacity not used, GWh	49.6	35.5	58.0	30.9	-	103.9	52.1	135.5	112.6	43.6	-	16.9	638.8	12.2%
Transmission N&E, GWh	31.6	7.1	34.1	11.7	-	31.4	36.0	26.2	32.5	11.8	-	130.7	353.2	6.7%
Transmission S&W, GWh	156.0	176.7	159.9	292.8	-	172.4	358.2	284.7	273.1	116.9	-	16.8	2007.3	38.2%
Limitations, GWh	182.4	183.9	172.8	-	-	-	0.1	-	-	-	-	-	539.2	10.3%
Disturbance outages, GWh	8.3	-	=	-	-	-	-	-	-	274.6	432.0	282.0	996.9	19.0%
Unplanned maintenance., GWh	18.6	-	-	-	-	-	-	-	-	-	-	-	18.6	0.4%
Planned maintenance, GWh	-	-	21.0	96.6	446.4	124.3	-	-	13.7	-	-	-	701.9	13.4%
Other outages, GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total, GWh	446.4	403.2	445.8	432.0	446.4	432.0	446.4	446.4	432.0	447.0	432.0	446.4	5256.0	100.0%
Losses SW, GWh	2.8	3.1	2.9	6.9	-	4.1	8.8	6.7	6.5	2.8	-	0.4	45.0	0.9%
Losses NE, GWh	0.4	0.1	0.5	0.2	-	0.5	0.7	0.4	0.6	0.2	-	2.5	6.1	0.1%

Figure 4.36 presents the annual utilisation of Kontek per utilisation and unavailability category for the years 2012–2023.

Figure 4.37 presents the percentage of hours of a year Kontek has been affected by either a limitation, a distur-

bance outage, an unplanned or planned maintenance outage or other outage annually during the years 2012–2023. Figure 4.38 presents the annual number of disturbance outages, unplanned and planned maintenances and other outages during the years 2012–2023.

Figure 4.36: Annual utilisation of Kontek per the utilisation and unavailability categories for the years 2012–2023.

8 Number of outages 1 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 Disturbances Planned maintenances Unplanned maintenances Other outages

Figure 4.37: Percentage of hours Kontek has been affected by either a limitation or an outage annually since 2012. The percentage is calculated by counting the number of hours with a limitation or outage and dividing it by the total number of hours in a year. It should be noted that any single hour can be affected by both an outage and a limitation.

Figure 4.38: The annual number of disturbances, unplanned and planned maintenance outages and other outages for Kontek for the years 2012–2023.

Number of outages annually for Kontek

ENTSO-E HVDC Utilisation and Unavailability Statistics 2023

| 16 September 2024

4.4.8 Konti-Skan 1

Figure 4.39 presents the availability and utilisation of Konti-Skan 1 for 2023 and Table 4.11 presents the numerical values behind it. Konti-Skan 1 has been in operation since 1965 and it is connected in south-western Sweden to Lindome (bidding zone SE3) and in Denmark to Vester Hassing (bidding zone DK1).

The rated capacity of Konti-Skan 1 and 2 was updated to 715 MW in both directions on 1 February 2020 (357.5 MW per link). The rated capacity was previously asymmetric depending on the flow direction: 740 MW towards east (370+370) and 680 MW towards west (340+340). The reason of the asymmetric rated capacity was due to historical limitations and reserve requirements, along with transmission measurements only being done in DK1.

of 92 % and the technical capacity not used was 24 %. Totally, 1.5 TWh (48 % of the technical capacity) was transmitted west to Denmark (SE3 \rightarrow DK1) and 0.7 TWh (21 % of the technical capacity) was transmitted east to Sweden (DK1 \rightarrow SE3).

In 2023, a total of 14 outages occurred, with return cable and electrode issues being responsible for 10 maintenance outages. Additionally, a scheduled yearly maintenance period took place in September, lasting for 8 days. The remaining outages were due to maintenance on a transformer, cleaning of salt on isolators and a minor disturbance outage caused by a fault in the control system. Despite the increased number of outages in 2023 compared to the previous years, their impact on the overall unavailable capacity of the link was relatively low, amounting to only 3.7 %.

In 2023, Konti-Skan 1 had an available technical capacity

Figure 4.39: Monthly percentage allocation of utilisation by category for Konti-Skan 1 in 2023.

Table 4.11: Monthly allocation of technical capacity (E_{max}) for Konti-Skan 1 in 2023. Note that losses are not included in the technical capacity (E_{max}), as is shown in Figure 2.1.

,		1					,							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total	% total
Technical capacity not used, GWh	66.5	40.7	93.5	63.5	56.1	32.8	38.8	35.1	56.0	74.1	87.7	93.9	738.6	23.6%
Transmission N&E, GWh	84.8	57.7	94.8	48.1	60.7	25.9	36.4	24.7	8.5	43.7	70.6	98.0	654.0	20.9%
Transmission S&W, GWh	114.7	141.9	60.8	108.2	122.6	183.2	190.9	198.4	69.1	142.3	98.9	58.9	1489.9	47.6%
Limitations, GWh	-	-	15.6	31.9	15.2	-	-	-	56.4	3.5	0.2	12.3	135.2	4.3%
Disturbance outages, GWh	-	-	-	-	0.2	-	-	-	-	-	-	-	0.2	0.0%
Unplanned maintenance., GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Planned maintenance, GWh	-	-	0.9	5.7	11.3	15.6	-	8.0	67.5	2.8	-	2.9	114.8	3.7%
Other outages, GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total, GWh	266.0	240.4	265.7	257.4	266.1	257.5	266.1	266.1	257.5	266.4	257.4	266.0	3132.7	100.0%
Losses SW, GWh	2.6	3.2	1.2	2.3	2.8	4.4	4.5	4.7	2.0	3.2	2.2	1.3	34.5	1.1%
Losses NE, GWh	1.9	1.3	2.2	1.1	1.4	0.6	0.9	0.6	0.2	1.0	1.5	2.2	15.0	0.5%

Figure 4.40 presents the annual utilisation of Konti-Skan 1 per utilisation and unavailability category for the years 2012–2023.

Figure 4.41 presents the percentage of hours of a year Konti-Skan 1 has been affected by either a limitation, a dis-

turbance outage, an unplanned or planned maintenance outage or other outage annually during the years 2012– 2023. Figure 4.42 presents the annual number of disturbance outages, unplanned and planned maintenances and other outages during the years 2012–2023.

Figure 4.40: Annual utilisation of Konti-Skan 1 per the utilisation and unavailability categories for the years 2012–2023.

Figure 4.41: Percentage of hours Konti-Skan 1 has been affected by either a limitation or an outage annually since 2012. The percentage is calculated by counting the number of hours with a limitation or outage and dividing it by the total number of hours in a year. It should be noted that any single hour can be affected by both an outage and a limitation.

Figure 4.42: The annual number of disturbances, unplanned and planned maintenance outages and other outages for Konti-Skan 1 for the years 2012–2023.

4.4.9 Konti-Skan 2

Figure 4.43 presents the availability and utilisation of Konti-Skan 2 for 2023 and Table 4.12 presents the numerical values behind it. Konti-Skan 2 is connected between Sweden and Denmark in parallel to Konti-Skan 1 and has been in operation since 1988.

The rated capacity of Konti-Skan 1 and 2 was updated to 715 MW in both directions on 1 February 2020 (357.5 MW per link). The rated capacity was previously asymmetric depending on the flow direction: 740 MW towards east (370+370) and 680 MW towards west (340+340). The reason of the asymmetric rated capacity was due to historical limitations and reserve requirements, along with transmission measurements only being done in DK1.

In 2023, Konti-Skan 2 had an available technical capacity

of 91 % and the technical capacity not used was 23 %. Totally, 1.5 TWh (47 % of the technical capacity) was transmitted west to Denmark (SE3 \rightarrow DK1) and 0.7 TWh (21 % of the technical capacity) was transmitted east to Sweden (DK1 \rightarrow SE3).

In 2023, there were a total of 18 outages with return cable and electrode issues being responsible for 10 maintenace outages. Additionally, a scheduled yearly maintenance period took place in September, lasting for 8 days. Furthermore cleaning of salt on isolators and a thermographic inspection were causes of maintenance outages. 5 outages were categorized as minor disturbances. Despite the increased number of outages in 2023 compared to the previous years, their impact on the overall unavailable capacity of the link was relatively low, amounting to only 4.3 %.

Figure 4.43: Monthly percentage allocation of utilisation by category for Konti-Skan 2 in 2023.

Table 4.12: Monthly allocation of technical capacity (E_{max}) for Konti-Skan 2 in 2023. Note that losses are not included in the technical capacity (E_{max}), as is shown in Figure 2.1.

Monthly utilisation of Konti-Skan 2 (South & West direction SE3→DK1)

		(0 \					,,							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total	% total
Technical capacity not used, GWh	65.0	39.5	90.8	61.6	53.9	31.4	37.7	33.6	63.6	71.9	85.1	90.8	725.1	23.1%
Transmission N&E, GWh	85.4	58.3	96.3	48.9	61.6	26.3	36.9	24.9	20.6	44.7	71.3	88.6	663.8	21.2%
Transmission S&W, GWh	116.0	143.3	62.7	109.6	123.3	185.0	192.6	200.0	36.5	143.8	100.3	60.0	1473.3	46.9%
Limitations, GWh	-	-	15.9	31.9	16.2	0.2	-	-	58.9	3.4	0.2	12.3	138.8	4.4%
Disturbance outages, GWh	-	-	-	-	0.6	-	-	0.6	-	-	0.7	8.8	10.8	0.3%
Unplanned maintenance., GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Planned maintenance, GWh	-	-	-	5.7	10.9	15.6	-	8.0	77.9	2.8	-	5.4	126.4	4.0%
Other outages, GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total, GWh	266.4	241.1	265.7	257.7	266.4	258.5	267.2	267.2	257.5	266.7	257.6	266.0	3138.2	100.0%
Losses SW, GWh	2.9	3.6	1.3	2.4	3.0	4.8	5.0	5.2	1.0	3.5	2.4	1.4	36.4	1.2%
Losses NE, GWh	2.1	1.4	2.4	1.2	1.5	0.7	0.9	0.6	0.5	1.0	1.7	2.1	16.1	0.5%

Figure 4.44 presents the annual utilisation of Konti-Skan 2 per utilisation and unavailability category for the years 2012–2023.

Figure 4.45 presents the percentage of hours of a year Konti-Skan 2 has been affected by either a limitation, a dis-

turbance outage, an unplanned or planned maintenance outage or other outage annually during the years 2012– 2023. Figure 4.46 presents the annual number of disturbance outages, unplanned and planned maintenances and other outages during the years 2012–2023.

Figure 4.44: Annual utilisation of Konti-Skan 2 per the utilisation and unavailability categories for the years 2012–2023.

Number of outages annually for Konti-Skan 2

Figure 4.45: Percentage of hours Konti-Skan 2 has been affected by either a limitation or an outage annually since 2012. The percentage is calculated by counting the number of hours with a limitation or outage and dividing it by the total number of hours in a year. It should be noted that any single hour can be affected by both an outage and a limitation.

Figure 4.46: The annual number of disturbances, unplanned and planned maintenance outages and other outages for Konti-Skan 2 for the years 2012–2023.

4.4.10 LitPol Link

Figure 4.47 presents the availability and utilisation of LitPol Link for 2023 and Table 3.1 presents the numerical values behind it. LitPol Link has been in operation since the end of 2015. In Lithuania, it is connected to Alytus (bidding zone LT) and in Poland to Ełk (bidding zone PL). The transmission capacity of LitPol Link is 500 MW.

In 2023, LitPol Link had an available technical capacity of 86 %. The technical capacity not used was 28 %. Totally,

1.5 TWh (35 % of the technical capacity) was transmitted west (LT->PI) and 0.99 TWH (23 % of the technical capacity) was transmitted east (PL->LT).

The annual maintenance of LitPol Link lasted 4 days in May. LitPol Link had in addition 3 planed corrective maintenance in November and December, and 2 disturbance outage with minimal impact in 2023.

Figure 4.47: Monthly percentage allocation of utilisation by category for LitPol Link in 2023.

Table 4.13: Monthly allocation of technical capacity (E_{max}) for LitPol Link in 2023. Note that losses are not included in the technical capacity (E_{max}), as is shown in Figure 2.1.

Monthly utilisation of Lit	POI LII	ik (Sou	th & W	est air	ection		-)							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total	% total
Technical capacity not used, GWh	45.5	70.7	71.2	26.3	92.4	135.9	160.9	142.6	121.0	125.8	124.1	97.8	1214.3	27.7%
Transmission N&E, GWh	10.8	16.0	30.4	13.0	21.3	106.9	42.1	126.0	187.9	105.6	137.3	200.4	997.5	22.8%
Transmission S&W, GWh	229.6	184.1	195.1	225.8	151.9	88.9	132.4	79.9	38.6	108.0	60.8	48.9	1543.9	35.2%
Limitations, GWh	85.8	65.2	74.7	94.6	51.9	28.3	36.6	23.5	12.5	33.2	21.4	17.5	545.3	12.4%
Disturbance outages, GWh	0.3	-	-	0.4	-	-	-	-	-	-	-	-	0.7	0.0%
Unplanned maintenance., GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Planned maintenance, GWh	-	-	-	-	54.5	-	-	-	-	-	16.5	7.4	78.4	1.8%
Other outages, GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total, GWh	372.0	336.0	371.5	360.0	372.0	360.0	372.0	372.0	360.0	372.5	360.0	372.0	4380.0	100.0%
Losses SW, GWh	3.5	2.9	3.0	3.4	2.6	1.6	2.4	1.5	0.8	1.9	1.2	0.9	25.8	0.6%
Losses NE, GWh	0.2	0.3	0.5	0.2	0.4	1.8	0.8	2.0	2.9	1.7	2.2	3.1	16.1	0.4%

Monthly utilisation of LitPol Link (South & West direction $LT \rightarrow PL$)

Figure 4.48 presents the annual utilisation of LitPol Link per utilisation and unavailability category for the years 2016–2023.

Figure 4.49 presents the percentage of hours of a year LitPol Link has been affected by either a limitation, a dis-

turbance outage, an unplanned or planned maintenance outage or other outage annually during the years 2016– 2023. Figure 4.50 presents the annual number of disturbance outages, unplanned and planned maintenances and other outages during the years 2016–2023.

Figure 4.48: Annual utilisation of LitPol Link per the utilisation and unavailability categories for the years 2016–2023.

Figure 4.49: Percentage of hours LitPol Link has been affected by either a limitation or an outage annually since 2016. The percentage is calculated by counting the number of hours with a limitation or outage and dividing it by the total number of hours in a year. It should be noted that any single hour can be affected by both an outage and a limitation.

Number of outages annually for LitPol Link

Figure 4.50: The annual number of disturbances, unplanned and planned maintenance outages and other outages for LitPol Link for the years 2016–2023.

4.4.11 NordBalt

Figure 4.51 presents the availability and utilisation of Nord-Balt for 2023 and Table 4.14 presents the numerical values behind it. NordBalt has been in operation since 2016. In Sweden, it is connected to Nybro (bidding zone SE4) and in Lithuania to Klaipeda (bidding zone LT). The transmission capacity of NordBalt is 700 MW at the receiving end.

In 2023, there was a cable fault on the link that lasted for

20 days in September, due to an issue encountered during the re-energization of the cable following a planned outage. The annual maintenance in 2023 took place over 6 days in October. Due to this prolonged disturbance, the technical available capacity of the link decreased compared to the levels observed in the previous three years and was around 93 %.

Figure 4.51: Monthly percentage allocation of utilisation by category for NordBalt in 2023.

Table 4.14: Monthly allocation of technical capacity (E_{max}) for NordBalt in 2023. Note that losses are not included in the technical capacity (E_{max}), as is shown in Figure 2.1.

wonting atmostion of we	Juban	. (3000		stunet	511011 51	-4 / []								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total	% total
Technical capacity not used, GWh	123.1	81.5	193.2	224.8	96.5	57.0	24.2	14.2	14.8	24.8	19.2	77.1	950.4	15.5%
Transmission N&E, GWh	4.7	0.1	11.1	10.2	1.3	0.8	-	-	-	0.1	0.1	1.2	29.7	0.5%
Transmission S&W, GWh	389.2	388.8	314.0	262.7	418.0	446.0	496.4	501.5	141.7	409.1	484.7	442.5	4694.7	76.6%
Limitations, GWh	1.0	-	1.8	6.3	4.9	0.3	0.3	2.0	0.1	-	-	-	16.7	0.3%
Disturbance outages, GWh	-	-	-	-	-	-	-	1.3	341.8	-	-	-	343.2	5.6%
Unplanned maintenance., GWh	2.8	-	-	-	-	-	-	-	5.6	-	-	-	8.4	0.1%
Planned maintenance, GWh	-	-	-	-	-	-	-	2.0	-	87.5	-	-	89.4	1.5%
Other outages, GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total, GWh	520.8	470.4	520.1	504.0	520.8	504.1	520.9	521.0	504.0	521.5	504.0	520.8	6132.4	100.0%
Losses SW, GWh	16.9	17.5	13.1	10.3	18.5	20.3	23.5	24.0	6.6	19.5	23.3	20.4	213.9	3.5%
Losses NE, GWh	0.2	-	0.4	0.3	0.1	-	-	-	-	-	-	-	1.0	0.0%

Monthly utilisation of NordBalt (South & West direction SE4→LT)

Figure 4.52 presents the annual utilisation of NordBalt per utilisation and unavailability category for the years 2016–2023.

Figure 4.53 presents the percentage of hours of a year NordBalt has been affected by either a limitation, a dis-

turbance outage, an unplanned or planned maintenance outage or other outage annually during the years 2016– 2023. Figure 4.54 presents the annual number of disturbance outages, unplanned and planned maintenances and other outages during the years 2016–2023.

Figure 4.52: Annual utilisation of NordBalt per the utilisation and unavailability categories for the years 2016–2023.

Figure 4.53: Percentage of hours NordBalt has been affected by either a limitation or an outage annually since 2016. The percentage is calculated by counting the number of hours with a limitation or outage and dividing it by the total number of hours in a year. It should be noted that any single hour can be affected by both an outage and a limitation.

Figure 4.54: The annual number of disturbances, unplanned and planned maintenance outages and other outages for NordBalt for the years 2016–2023.

4.4.12 NordLink 1

Figure 4.55 presents the availability and utilisation of NordLink 1 for 2023 and Table 4.15 presents the numerical values behind it. NordLink 1 is the HVDC link located between Tonstad/Ertsmyra in Sirdal municipality in Norway (bidding zone NO2) and Wilster in Schleswig-Holstein in Germany (bidding zone DE). The parallel NordLink 1 and 2 links were commissioned on December 2020 and have each a transmission capacity of 700 MW (1400 MW in total) to the receiving end.

In 2023, NordLink 1 had an available technical capacity of 97.5 %. The technical capacity not used was 33 %. Totally, 3.1 TWh (51 % of the technical capacity) was transmitted south to Germany (NO2 \rightarrow DE) and 0.8 TWh (14 % of the technical capacity) was transmitted north to Norway (DE \rightarrow NO2).

NordLink has a 51 km overhead line from Ertsmyra to Vollesfjord where the cable starts. This part is vulnerable to disturbances due to weather (lightning and storms). These are normally not permanent faults, so the system is equipped with auto-reclosing functionality. Due to some problems with this in Ertsmyra, some outages had a longer duration than expected due to faults in the auto-reclosing sequence and problems with the discharge resistor.

Figure 4.55: Percentage distribution of the availability and utilisation per category according to month for NordLink 1 in 2023.

Table 4.15: Monthly distribution of the technical capacity (E_{max}) for NordLink 1 in 2023. Note that losses are not included in the technical capacity (E_{max}), as is shown in Figure 2.1.

Monthly utilisation of No	Monthly utilisation of NordLink 1 (South & West direction NO2 \rightarrow DE)													
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total	% total
Technical capacity not used, GWh	149.7	141.7	204.2	169.7	212.5	173.2	164.6	123.6	65.6	147.2	248.0	218.0	2017.8	32.9%
Transmission N&E, GWh	152.4	27.0	111.2	74.6	43.9	33.2	44.5	14.4	4.6	26.2	85.4	205.1	822.7	13.4%
Transmission S&W, GWh	205.9	279.7	193.7	260.2	264.7	297.6	312.3	384.4	332.9	349.0	169.6	92.7	3142.7	51.2%
Limitations, GWh	-	18.8	4.8	-	-	-	-	-	-	-	-	-	23.7	0.4%
Disturbance outages, GWh	13.1	3.7	-	-	-	0.4	-	-	3.9	-	-	-	21.1	0.3%
Unplanned maintenance., GWh	-	-	6.5	-	-	-	-	-	98.2	-	1.3	5.1	111.0	1.8%
Planned maintenance, GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Other outages, GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total, GWh	521.1	471.0	520.3	504.5	521.1	504.3	521.5	522.4	505.2	522.5	504.2	520.8	6139.0	100.0%
Losses SW, GWh	6.8	8.1	5.6	7.5	7.3	9.8	9.5	12.4	11.4	10.4	4.8	2.4	96.0	1.6%
Losses NE, GWh	-4.8	-0.8	-3.5	-2.3	-1.3	-1.0	-1.3	-0.4	-0.1	-0.8	-2.6	-6.6	-25.5	-

Figure 4.56 presents the annual utilisation of NordLink 1 per utilisation and unavailability category for the years 2021–2023.

Figure 4.57 presents the percentage of hours of a year NordLink 1 has been affected by either a limitation, a dis-

turbance outage, an unplanned or planned maintenance outage or other outage annually during the years 2012– 2023. Figure 4.58 presents the annual number of disturbance outages, unplanned and planned maintenances and other outages during the years 2012–2023.

Figure 4.56: Annual utilisation of NordLink 1 per the utilisation and unavailability categories for the years 2021–2023.

20

Percentage of unavailable hours annually per category for NordLink 1

Figure 4.57: Percentage of hours NordLink 1 has been affected by either a limitation or an outage annually sinceFigure 4.58: The annu2021. The percentage is calculated by counting the number of hours with a limitation or outage and dividing it by
the total number of hours in a year. It should be noted
that any single hour can be affected by both an outageFigure 4.58: The annu
planned and planned in
outages for NordLink 1 f

Figure 4.58: The annual number of disturbances, unplanned and planned maintenance outages and other outages for NordLink 1 for the years 2021–2023.

and a limitation.

4.4.13 NordLink 2

Figure 4.59 presents the availability and utilisation of NordLink 2 for 2023 and Table 4.16 presents the numerical values behind it. NordLink 2 is the HVDC link located between Tonstad/Ertsmyra in Sirdal municipality in Norway (bidding zone NO2) and Wilster in Schleswig-Holstein in Germany (bidding zone DE). The parallel NordLink 1 and 2 links were commissioned on December 2020 and have each a transmission capacity of 700 MW (1400 MW in total) to the receiving end.

In 2023, NordLink 1 had an available technical capacity of 95.5 %. The technical capacity not used was 33 %. Totally, 3.0 TWh (49.3 % of the technical capacity) was transmit-

ted south to Germany (NO2 \rightarrow DE) and 0.8 TWh (13 % of the technical capacity) was transmitted north to Norway (DE \rightarrow NO2).

NordLink has a 51 km overhead line from Ertsmyra to Vollesfjord where the cable starts. This part is vulnerable to disturbances due to weather (lightning and storms). These are normally not permanent faults, so the system is equipped with auto-reclosing functionality. Due to some problems with this in Ertsmyra, some outages had a longer duration than expected due to faults in the auto-reclosing sequence and problems with the discharge resistor.

Figure 4.59: Percentage distribution of the availability and utilisation per category according to month for NordLink 2 in 2023.

Table 4.16: Monthly distribution of the technical capacity (E_{max}) for NordLink 2 in 2023. Note that losses are not included in the technical capacity (E_{max}), as is shown in Figure 2.1.

Monthly utilisation of No	ordLink	: 2 (Soι	ith & W	/est dir	ection	$NO2 \rightarrow$	DE)							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total	% total
Technical capacity not used, GWh	140.6	142.2	199.8	170.6	213.5	173.2	174.7	124.2	76.7	148.0	246.5	222.6	2032.6	33.1%
Transmission N&E, GWh	145.9	27.0	106.4	74.4	43.8	30.1	44.4	14.4	4.6	26.1	86.8	204.6	808.6	13.2%
Transmission S&W, GWh	172.7	278.8	185.0	259.1	263.6	239.7	297.8	366.5	350.7	347.7	169.0	92.8	3023.3	49.3%
Limitations, GWh	-	18.9	4.8	-	-	-	-	-	-	-	-	-	23.7	0.4%
Disturbance outages, GWh	61.8	3.7	-	-	-	61.0	4.2	16.4	-	-	-	-	147.0	2.4%
Unplanned maintenance., GWh	-	-	24.1	-	-	-	-	-	72.1	-	1.7	0.9	98.8	1.6%
Planned maintenance, GWh	-	-	-	-	-	-	-	-	0.4	-	-	-	0.4	0.0%
Other outages, GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total, GWh	520.9	470.6	520.1	504.1	520.9	504.1	521.1	521.4	504.5	521.8	504.1	520.8	6134.4	100.0%
Losses SW, GWh	5.2	8.1	5.3	7.6	7.3	7.0	8.7	11.6	12.3	10.5	4.9	2.5	90.9	1.5%
Losses NE, GWh	-4.5	-0.8	-3.2	-2.3	-1.3	-0.9	-1.3	-0.4	-0.1	-0.8	-2.7	-6.5	-24.8	-

Figure 4.60 presents the annual utilisation of NordLink 2 per utilisation and unavailability category for the years 2021–2023.

Figure 4.61 presents the percentage of hours of a year NordLink 2 has been affected by either a limitation, a dis-

turbance outage, an unplanned or planned maintenance outage or other outage annually during the years 2012– 2023. Figure 4.62 presents the annual number of disturbance outages, unplanned and planned maintenances and other outages during the years 2012–2023.

Figure 4.60: Annual utilisation of NordLink 2 per the utilisation and unavailability categories for the years 2021–2023.

Percentage of unavailable hours annually per category for NordLink 2

Figure 4.61: Percentage of hours NordLink 2 has been affected by either a limitation or an outage annually since 2021. The percentage is calculated by counting the number of hours with a limitation or outage and dividing it by the total number of hours in a year. It should be noted that any single hour can be affected by both an outage and a limitation.

Figure 4.62: The annual number of disturbances, unplanned and planned maintenance outages and other outages for NordLink 2 for the years 2021–2023.

4.4.14 NorNed

Figure 4.63 presents the availability and utilisation of NorNed for 2023 and Table 4.17 presents the numerical values behind it. In Norway on the south-western coast (bidding zone NO2) it is connected to Feda substation and in Netherlands to Eemshaven (bidding zone APX NL). NorNed has been in operation since 2008 and its transmission capacity is 700 MW.

In 2023, NorNed had an available technical capacity of 84 %. The technical capacity not used was 28 %. Totally, 2.9 TWh (46 % of the technical capacity) was transmitted south to Netherlands (NO2 \rightarrow NL) and 0.6 TWh (10 % of

the technical capacity) was transmitted north to Norway (NL \rightarrow NO2).

NorNed had a major cable fault on the Dutch side in 2022. Following the repair of this fault it has been decided to reduce the DC operation voltage to 400 kV to protect the cable. This has reduced the capacity to 640/620 MW export/import. This will be held until that part of the cable is renewed. There were several situations with limitations due to problems with filter on the Dutch side. Also, maintenance work in the AC transmission system on the Dutch side had an impact on the capacity.

Figure 4.63: Monthly percentage allocation of utilisation by category for NorNed in 2023.

Table 4.17: Monthly allocation of technical capacity (E_{max}) for NorNed in 2023. Note that losses are not included in the technical capacity (E_{max}), as is shown in Figure 2.1.

Image of the stateMareTransmission S&M,GWh38.136.036.321.323.321.326.520.067.115.016	Monthly utilisation of No	prNed	(South	& Wes	t direct	tion NC	2→NL)							
Technical capacity not used, GWh173.483.8189.1185.3165.3172.7147.3113.149.277.0169.122.8175.327.8%Transmission N&E, GWh69.36.077.169.757.548.250.523.96.317.040.3176.7643.210.2%Transmission S&W, GWh254.936.024.4241.728.426.0270.8241.413.0264.5168.5108.2292.946.3%Limitations, GWh38.132.023.321.726.522.067.1157.413.917.098.521.2818.713.6%Disturbance outages, GWh<		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total	% total
Transmission N&E, GWh69.36.07.7.169.757.548.250.523.96.317.940.317.6764.3210.2%Transmission S&W, GWh254.9362.0245.4241.7286.4262.0270.8241.4217.0264.5168.5108.2292.946.3%Limitations, GWh38.132.023.321.726.522.067.115.7.4133.917.098.521.2818.713.0%Disturbance outages, GWh <t< td=""><td>Technical capacity not used, GWh</td><td>173.4</td><td>83.8</td><td>189.1</td><td>185.3</td><td>165.3</td><td>172.7</td><td>147.3</td><td>113.1</td><td>49.2</td><td>77.0</td><td>169.1</td><td>228.9</td><td>1754.3</td><td>27.8%</td></t<>	Technical capacity not used, GWh	173.4	83.8	189.1	185.3	165.3	172.7	147.3	113.1	49.2	77.0	169.1	228.9	1754.3	27.8%
Transmission S&W, GWh254.9362.0245.4241.7286.4262.0270.8241.4217.0264.5168.5108.2292.246.3%Limitations, GWh38.132.023.321.726.522.067.1157.4133.9177.098.521.2818.713.0%Disturbance outages, GWh </td <td>Transmission N&E, GWh</td> <td>69.3</td> <td>6.0</td> <td>77.1</td> <td>69.7</td> <td>57.5</td> <td>48.2</td> <td>50.5</td> <td>23.9</td> <td>6.3</td> <td>17.9</td> <td>40.3</td> <td>176.7</td> <td>643.2</td> <td>10.2%</td>	Transmission N&E, GWh	69.3	6.0	77.1	69.7	57.5	48.2	50.5	23.9	6.3	17.9	40.3	176.7	643.2	10.2%
Limitations, GWh38.132.023.321.726.522.067.1157.4133.9177.098.521.2818.713.9Disturbance outages, GWh	Transmission S&W, GWh	254.9	362.0	245.4	241.7	286.4	262.0	270.8	241.4	217.0	264.5	168.5	108.2	2922.9	46.3%
Disturbance outages, GWh16.0-0.10.0716.80.3%Unplanned maintenance, GWh6.773.980.61.3%Planned maintenance, GWh6.722.1-41.9-70.71.1%Other outages, GWh1.1%Total, GWh53.7483.853.50518.453.7518.453.7518.453.6518.4518.4518.453.760.71.0%Losses NE, GWh2.70.20.33.33.02.42.00.80.20.61.57.62.60.4	Limitations, GWh	38.1	32.0	23.3	21.7	26.5	22.0	67.1	157.4	133.9	177.0	98.5	21.2	818.7	13.0%
Unplanned maintenance, GWh · · · · · · · · 88.0 1.3% Planned maintenance, GWh · · · · · · · · · · 88.0 1.3% Planned maintenance, GWh · · · · · · · · · 88.0 1.3% Other outages, GWh · <td< td=""><td>Disturbance outages, GWh</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>16.0</td><td>-</td><td>0.1</td><td>0.7</td><td>16.8</td><td>0.3%</td></td<>	Disturbance outages, GWh	-	-	-	-	-	-	-	-	16.0	-	0.1	0.7	16.8	0.3%
Planned maintenance,GWh	Unplanned maintenance., GWh	-	-	-	-	-	6.7	-	-	73.9	-	-	-	80.6	1.3%
Other outages, GWh -	Planned maintenance, GWh	-	-	-	-	-	6.7	-	-	22.1	-	41.9	-	70.7	1.1%
Total, GWh 535.7 483.8 535.0 518.4 535.7 518.4 535.7 518.4 536.4 518.4 536.7 6307.2 100.0% Losses SW, GWh 10.1 15.2 9.8 9.5 11.6 10.5 10.2 7.5 6.8 8.4 5.4 4.2 109.1 1.7% Losses NE, GWh 2.7 0.2 3.3 3.0 2.4 2.0 2.0 0.8 0.2 0.6 1.5 7.6 26.4 0.4%	Other outages, GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Losses SW, GWh 10.1 15.2 9.8 9.5 11.6 10.5 10.2 7.5 6.8 8.4 5.4 4.2 109.1 1.7% Losses NE, GWh 2.7 0.2 3.3 3.0 2.4 2.0 0.8 0.2 0.6 1.5 7.6 26.4 109.1 1.7%	Total, GWh	535.7	483.8	535.0	518.4	535.7	518.4	535.7	535.7	518.4	536.4	518.4	535.7	6307.2	100.0%
Losses NE, GWh 2.7 0.2 3.3 3.0 2.4 2.0 2.0 0.8 0.2 0.6 1.5 7.6 26.4 0.4%	Losses SW, GWh	10.1	15.2	9.8	9.5	11.6	10.5	10.2	7.5	6.8	8.4	5.4	4.2	109.1	1.7%
	Losses NE, GWh	2.7	0.2	3.3	3.0	2.4	2.0	2.0	0.8	0.2	0.6	1.5	7.6	26.4	0.4%

Figure 4.64 presents the annual utilisation of NorNed per utilisation and unavailability category for the years 2012–2023.

Figure 4.65 presents the percentage of hours of a year NorNed has been affected by either a limitation, a dis-

turbance outage, an unplanned or planned maintenance outage or other outage annually during the years 2012– 2023. Figure 4.66 presents the annual number of disturbance outages, unplanned and planned maintenances and other outages during the years 2012–2023.

Figure 4.64: Annual utilisation of NorNed per the utilisation and unavailability categories for the years 2012–2023.

Number of outages annually for NorNed

Figure 4.65: Percentage of hours NorNed has been affected by either a limitation or an outage annually since 2012. The percentage is calculated by counting the number of hours with a limitation or outage and dividing it by the total number of hours in a year. It should be noted that any single hour can be affected by both an outage and a limitation.

Figure 4.66: The annual number of disturbances, unplanned and planned maintenance outages and other outages for NorNed for the years 2012–2023.

4.4.15 North Sea Link 1

Figure 4.67 presents the availability and utilisation of North Sea Link 1 for 2023 and Table 4.18 presents the numerical values behind it. North Sea Link 1 where put into operation 1. October 2021 so this is the second year with data for this link. With a cable length of 720 km the cable is the longest in this publication.

In 2023, North Sea Link 1 had an available technical capacity of 94 %. The technical capacity not used was 18 %. Totally, 4.5 TWh (73 % of the technical capacity) was transmitted west to Great Britain (NO2 \rightarrow UK) and 0.2 TWh (3 %

of the technical capacity) was transmitted north to Norway (UK \rightarrow NO2).

During the year there have been two longer outages for North Sea Link 1, just some short interruptions due to loss of power to the auxiliary system. The technical capacity has been reduced periodically due to AC network limitations, mainly in Norway. Due to maintenance North Sea Link 1 and 2 were unavailable for 11 days in October.

Figure 4.67: Monthly percentage allocation of utilisation by category for North Sea Link 1 in 2023.

Table 4.18: Monthly allocation of technical capacity (E_{max}) for North Sea Link 1 in 2023. Note that losses are not included in the technical capacity (E_{max}), as is shown in Figure 2.1.

				r	vorun S	ea Link	, T							
Monthly utilisation of No	orth Se	a Link :	1 (Sout	h & We	est dire	ction N	102→L	JK)						
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total	% total
Technical capacity not used, GWh	145.1	79.6	69.6	67.3	57.7	142.8	110.2	25.3	19.7	53.2	99.6	212.2	1082.3	17.6%
Transmission N&E, GWh	29.2	0.5	6.3	7.8	1.8	0.8	25.9	0.3	0.3	1.4	14.4	110.9	199.6	3.3%
Transmission S&W, GWh	346.4	390.3	399.3	358.4	432.0	344.0	383.0	469.9	484.0	276.8	381.6	197.8	4463.5	72.8%
Limitations, GWh	-	-	42.5	70.4	29.3	13.0	1.7	25.3	-	-	-	-	182.3	3.0%
Disturbance outages, GWh	-	-	2.4	-	-	3.4	-	-	-	-	-	-	5.8	0.1%
Unplanned maintenance., GWh	-	-	-	-	-	-	-	-	-	190.2	-	-	190.2	3.1%
Planned maintenance, GWh	-	-	-	-	-	-	-	-	-	-	8.4	-	8.4	0.1%
Other outages, GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total, GWh	520.8	470.4	520.1	504.0	520.8	504.0	520.8	520.8	504.0	521.5	504.0	520.8	6132.0	100.0%
Losses SW, GWh	11.7	13.5	13.7	11.9	15.6	12.8	14.3	17.6	18.8	10.7	14.2	7.0	161.7	2.6%
Losses NE, GWh	0.9	-	0.2	0.2	0.1	0.1	0.8	-	-	0.1	0.5	4.0	6.9	0.1%

Figure 4.68 presents the annual utilisation of North Sea Link 1 per utilisation and unavailability category for the years 2021–2023.

Figure 4.69 presents the percentage of hours of a year North Sea Link 1 has been affected by either a limitation,

a disturbance outage, an unplanned or planned maintenance outage or other outage annually during the years 2012–2023. Figure 4.70 presents the annual number of disturbance outages, unplanned and planned maintenances and other outages during the years 2012–2023.

Figure 4.68: Annual utilisation of North Sea Link 1 per the utilisation and unavailability categories for the years 2021–2023.

Figure 4.69: Percentage of hours North Sea Link 1 has been affected by either a limitation or an outage annually since 2021. The percentage is calculated by counting the number of hours with a limitation or outage and dividing it by the total number of hours in a year. It should be noted that any single hour can be affected by both an outage and a limitation.

Figure 4.70: The annual number of disturbances, unplanned and planned maintenance outages and other outages for North Sea Link 1 for the years 2021–2023.

4.4.16 North Sea Link 2

Figure 4.71 presents the availability and utilisation of North Sea Link 2 for 2023 and Table 4.19 presents the numerical values behind it. North Sea Link 2 where put into operation 1 October 1, 2021 so this is the second year with data for this link. With a cable length of 720 km the cable is the longest in this publication.

In 2023, North Sea Link 2 had an available technical capacity of 93 %. The technical capacity not used was 17 %. Totally, 4.5 TWh (73 % of the technical capacity) was transmitted west to Great Britain (NO2 \rightarrow UK) and 0.2 TWh (3 % of the technical capacity) was transmitted north to Norway (UK \rightarrow NO2). During the year there have been one disturbance outage for North Sea Link 2 lasting for 4 days due to a faulty capacitor.

Apart from that there were only shorter disturbance outages with the same origin as for North Sea Link 1 The technical capacity has been reduced periodically due to AC network limitations, mainly in the United Kingdom. Due to maintenance North Sea Link 1 and 2 were unavailable for 11 days in October.

Figure 4.71: Monthly percentage allocation of utilisation by category for North Sea Link 2 in 2023.

Table 4.19: Monthly allocation of technical capacity (E_{max}) for North Sea Link 2 in 2023. Note that losses are not included in the technical capacity (E_{max}), as is shown in Figure 2.1.

wonting atmostion of we	Ji th Se		2 (30ut		unc	CUOITIN	102 /0	/K)						
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total	% total
Technical capacity not used, GWh	145.1	79.6	71.9	67.3	57.7	104.3	110.2	25.3	19.7	53.2	103.0	210.7	1047.9	17.1%
Transmission N&E, GWh	29.2	0.5	6.3	7.8	1.8	0.8	25.9	0.3	0.3	1.4	14.4	110.9	199.6	3.3%
Transmission S&W, GWh	346.4	390.3	399.3	358.4	432.0	344.0	383.0	469.9	484.0	276.8	381.6	197.8	4463.5	72.8%
Limitations, GWh	-	-	42.6	70.4	29.3	13.0	1.7	25.3	-	-	-	-	182.4	3.0%
Disturbance outages, GWh	-	-	-	-	-	41.9	-	-	-	-	5.0	1.5	48.4	0.8%
Unplanned maintenance., GWh	-	-	-	-	-	-	-	-	-	190.2	-	-	190.2	3.1%
Planned maintenance, GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Other outages, GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total, GWh	520.8	470.4	520.1	504.0	520.8	504.0	520.8	520.8	504.0	521.5	504.0	520.8	6132.0	100.0%
Losses SW, GWh	11.7	13.5	13.7	11.9	15.6	12.8	14.3	17.6	18.8	10.7	14.2	7.0	161.7	2.6%
Losses NE, GWh	0.9	-	0.2	0.2	0.1	0.1	0.8	-	-	0.1	0.5	4.0	6.9	0.1%

Monthly utilisation of North Sea Link 2 (South & West direction NO2→UK)

Figure 4.72 presents the annual utilisation of North Sea Link 2 per utilisation and unavailability category for the years 2021–2023.

Figure 4.73 presents the percentage of hours of a year North Sea Link 2 has been affected by either a limitation, a disturbance outage, an unplanned or planned mainte-

ENTSO-E HVDC Utilisation and Unavailability Statistics 2023

nance outage or other outage annually during the years 2012–2023. Figure 4.74 presents the annual number

of disturbance outages, unplanned and planned maintenances and other outages during the years 2012–2023.

Figure 4.72: Annual utilisation of North Sea Link 2 per the utilisation and unavailability categories for the years 2021–2023.

Figure 4.73: Percentage of hours North Sea Link 2 has been affected by either a limitation or an outage annually since 2021. The percentage is calculated by counting the number of hours with a limitation or outage and dividing it by the total number of hours in a year. It should be noted that any single hour can be affected by both an outage and a limitation.

Figure 4.74: The annual number of disturbances, unplanned and planned maintenance outages and other outages for North Sea Link 2 for the years 2021–2023.

entso

4.4.17 Skagerrak 1

Figure 4.75 presents the availability and utilisation of Skagerrak 1 for 2023 and Table 4.20 presents the numerical values behind it. Skagerrak 1 and Skagerrak 2 have been in operation since 1976 and are the oldest HVDC links in operation in the Nordic countries. In Norway, the links are connected to Kristiansand on the southern coast (bidding zone NO2) and in Denmark to Tjele (bidding zone DK1), 15 km east of the town of Viborg in the northern part of Jutland. The transmission capacity is 236 MW at the receiving end.

In 2023, Skagerrak 1 had an available technical capacity of 94 %. The technical capacity not used was 44 %. Totally, 0.7 TWh (34 % of the technical capacity) was transmitted south to Denmark (NO2 \rightarrow DK1) and 0.3 TWh (15 % of the technical capacity) was transmitted north to Norway

(DK1→NO2).

Annual maintenance for Skagerrak 1 lasted 10 days. There were four minor disturbance outage and three minor corrective maintenance outages. Untill June 2023. Skagerrak 1, 2, 3 and 4 have been limited due to "careful operation" since the Skagerrak 4 cable faults in December 2019.

In 2023, the north and the south direction were approximately equally prioritized. The careful operation of the Skagerrak links has impacted each of the links differently based on the transmission direction and which links are in operation. For example, if all links are available and the transmission goes from Denmark to Norway (i.e., north), Skagerrak 2 is limited to 0 MW and Skagerrak 3 is limited to 200 MW to maintain acceptable electrode current levels.

Figure 4.75: Monthly percentage allocation of utilisation by category for Skagerrak 1 in 2023.

Table 4.20: Monthly allocation of technical capacity (E_{max}) for Skagerrak 1 in 2023. Note that losses are not included in the technical capacity (E_{max}), as is shown in Figure 2.1.

Monthly utilisation of Sk	agerra	k 1 (So	uth & \	Nest di	rectior	NO2	>DK1)							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total	% total
Technical capacity not used, GWh	78.5	68.1	75.7	54.5	69.5	49.5	85.8	76.1	62.5	90.5	112.8	97.8	921.3	44.5%
Transmission N&E, GWh	46.4	17.9	47.3	21.9	32.3	18.8	19.2	-	0.1	22.8	25.3	67.7	319.7	15.4%
Transmission S&W, GWh	51.0	72.8	52.7	35.7	70.9	97.9	52.6	71.3	107.1	58.1	31.8	8.7	710.5	34.3%
Limitations, GWh	-	-	-	-	-	3.8	0.7	28.1	0.2	4.5	-	-	37.3	1.8%
Disturbance outages, GWh	-	-	-	-	-	-	16.3	-	-	-	-	3.5	19.8	1.0%
Unplanned maintenance., GWh	-	-	0.1	-	-	-	-	-	-	-	-	-	0.1	0.0%
Planned maintenance, GWh	-	-	-	58.3	2.8	-	1.0	-	-	-	-	-	62.1	3.0%
Other outages, GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total, GWh	175.8	158.8	175.8	170.3	175.6	169.9	175.6	175.6	169.9	175.9	169.9	177.7	2070.8	100.0%
Losses SW, GWh	2.2	3.2	2.7	2.0	3.5	4.6	2.6	3.4	5.6	2.8	1.5	0.4	34.5	1.7%
Losses NE, GWh	2.3	0.8	2.0	0.9	1.3	0.8	0.9	-	-	1.0	1.2	3.5	14.8	0.7%

Figure 4.76 presents the annual utilisation of Skagerrak 1 per utilisation and unavailability category for the years 2012–2023.

Figure 4.77 presents the percentage of hours of a year Skagerrak 1 has been affected by either a limitation, a disturbance outage, an unplanned or planned maintenance outage or other outage annually during the years 2012– 2023. Figure 4.78 presents the annual number of disturbance outages, unplanned and planned maintenances and other outages during the years 2012–2023.

Figure 4.76: Annual utilisation of Skagerrak 1 per the utilisation and unavailability categories for the years 2012–2023.

Number of outages annually for Skagerrak 1

Figure 4.77: Percentage of hours Skagerrak 1 has been affected by either a limitation or an outage annually since 2012. The percentage is calculated by counting the number of hours with a limitation or outage and dividing it by the total number of hours in a year. It should be noted that any single hour can be affected by both an outage and a limitation.

Figure 4.78: The annual number of disturbances, unplanned and planned maintenance outages and other outages for Skagerrak 1 for the years 2012–2023. Skagerrak 1 had no other outages during the years 2012–2023.

entso

4.4.18 Skagerrak 2

Figure 4.79 presents the availability and utilisation of Skagerrak 2 for 2023 and Table 4.21 presents the numerical values behind it. Skagerrak 1 and Skagerrak 2 have been in operation since 1976 and are the oldest HVDC links in operation in the Nordic countries. In Norway, the links are connected to Kristiansand on the southern coast (bidding zone NO2) and in Denmark to Tjele (bidding zone DK1), 15 km east of the town of Viborg in the northern part of Jutland. The transmission capacity of Skagerrak 2 is 236 MW at the receiving end.

In 2023, Skagerrak 2 had an available technical capacity of 78 %. The technical capacity not used was 39 %. Totally, 0.6 TWh (28 % of the technical capacity) was transmitted south to Denmark (NO2 \rightarrow DK1) and 0.2 TWh (11 % of the technical capacity) was transmitted north to Norway (DK1 \rightarrow NO2). Annual maintenance for Skagerrak 2 lasted 10 days in April. There were on major disturbance outage due to a cable fault, one minor disturbance outage and three minor corrective maintenance. Untill June 2023. Skagerrak 1, 2, 3 and 4 have been limited due to "careful operation" since the Skagerrak 4 cable faults in December 2019.

In 2023, the north and the south direction were approximately equally prioritized. The careful operation of the Skagerrak links has impacted each of the links differently based on the transmission direction and which links are in operation. For example, if all links are available and the transmission goes from Denmark to Norway (i.e., north), Skagerrak 2 is limited to 0 MW and Skagerrak 3 is limited to 200 MW to maintain acceptable electrode current levels.

Figure 4.79: Monthly percentage allocation of utilisation by category for Skagerrak 2 in 2023.

Table 4.21: Monthly allocation of technical capacity (E_{max}) for Skagerrak 2 in 2023. Note that losses are not included in the technical capacity (E_{max}), as is shown in Figure 2.1.

Monthly utilisation of Sk	agerra	k 2 (So	uth & \	Nest di	rectior	NO2-	>DK1)							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total	% total
Technical capacity not used, GWh	61.9	55.0	32.4	14.0	58.7	49.3	94.3	75.2	62.2	90.4	106.1	98.2	797.7	38.5%
Transmission N&E, GWh	46.4	12.8	5.5	0.3	18.8	19.0	19.8	-	0.1	22.9	21.6	70.8	238.0	11.5%
Transmission S&W, GWh	3.3	25.1	30.3	9.7	70.8	97.8	60.9	71.1	107.5	58.1	31.8	8.6	575.1	27.8%
Limitations, GWh	64.0	65.7	28.8	4.2	24.5	3.8	0.7	27.9	0.2	4.5	-	-	224.2	10.8%
Disturbance outages, GWh	-	-	78.2	83.5	-	-	-	-	-	-	10.4	-	172.2	8.3%
Unplanned maintenance., GWh	-	-	0.1	-	-	-	-	-	-	-	-	-	0.1	0.0%
Planned maintenance, GWh	-	-	-	58.3	2.8	-	-	1.4	-	-	-	-	62.5	3.0%
Other outages, GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total, GWh	175.6	158.6	175.4	169.9	175.6	169.9	175.6	175.6	170.0	175.9	169.9	177.7	2069.8	100.0%
Losses SW, GWh	0.3	1.4	1.6	0.5	3.7	5.2	3.1	3.3	5.5	2.9	1.5	0.4	29.3	1.4%
Losses NE, GWh	2.3	0.6	0.3	-	1.1	1.0	0.9	-	-	1.2	1.0	3.7	12.4	0.6%

Figure 4.80 presents the annual utilisation of Skagerrak 2 per utilisation and unavailability category for the years 2012–2023.

Figure 4.81 presents the percentage of hours of a year Skagerrak 2 has been affected by either a limitation, a disturbance outage, an unplanned or planned maintenance outage or other outage annually during the years 2012– 2023. Figure 4.82 presents the annual number of disturbance outages, unplanned and planned maintenances and other outages during the years 2012–2023.

Figure 4.80: Annual utilisation of Skagerrak 2 per the utilisation and unavailability categories for the years 2012–2023.

Number of outages annually for Skagerrak 2

Figure 4.81: Percentage of hours Skagerrak 2 has been affected by either a limitation or an outage annually since 2012. The percentage is calculated by counting the number of hours with a limitation or outage and dividing it by the total number of hours in a year. It should be noted that any single hour can be affected by both an outage and a limitation.

Figure 4.82: The annual number of disturbances, unplanned and planned maintenance outages and other outages for Skagerrak 2 for the years 2012–2023. Skagerrak 2 had no other outages during the years 2012–2023.

Page 50 of 75

. .

. . .

. . . .

4.4.19 **Skagerrak 3**

Figure 4.83 presents the availability and utilisation of Skagerrak 3 for 2023 and Table 4.22 presents the numerical values behind it. Skagerrak 3 has been in operation since 1993. In Norway, it is connected to Kristiansand (bidding zone NO2) and in Denmark to Tjele (bidding zone DK1). The transmission capacity of Skagerrak 3 is 478 MW at the receiving end.

In 2023, Skagerrak 3 had an available technical capacity of 89 %. The technical capacity not used was 24 %. Totally, 1.8 TWh (43 % of the technical capacity) was transmitted south to Denmark (NO2→DK1) and 0.9 TWh (22 % of the technical capacity) was transmitted north to Norway $(DK1 \rightarrow NO2)$.

Annual maintenance for Skagerrak 3 lasted 5 days in May. There were one minor disturbance outages and five minor corrective maintenance. Untill June 2023.Skagerrak 1, 2, 3 and 4 have been limited due to "careful operation" since the Skagerrak 4 cable faults in December 2019.

In 2023, the north and the south direction were approximately equally prioritized. The careful operation of the Skagerrak links has impacted each of the links differently based on the transmission direction and which links are in operation. For example, if all links are available and the transmission goes from Denmark to Norway (i.e., north), Skagerrak 2 is limited to 0 MW and Skagerrak 3 is limited to 200 MW to maintain acceptable electrode current levels.

Figure 4.83: Monthly percentage allocation of utilisation by category for Skagerrak 3 in 2023.

Table 4.22: Monthly allocation of technical capacity (E_{max}) for Skagerrak 3 in 2023. Note that losses are not included in the technical capacity (E_{max}) , as is shown in Figure 2.1.

.. .

Monthly utilisation of Skagerrak 3 (South & West direction NO2 \rightarrow DK1)														
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total	% total
Technical capacity not used, GWh	72.1	62.6	80.6	75.3	107.7	108.2	68.8	46.0	54.2	105.7	114.0	105.2	1000.5	23.9%
Transmission N&E, GWh	148.2	73.4	57.1	27.7	34.1	26.3	103.8	45.1	11.4	77.4	101.5	196.3	902.3	21.5%
Transmission S&W, GWh	58.3	100.2	145.5	156.7	114.0	179.6	183.2	264.8	278.6	158.4	126.0	54.1	1819.5	43.4%
Limitations, GWh	77.3	84.7	71.9	84.5	41.2	30.2	-	-	-	14.7	0.1	-	404.6	9.7%
Disturbance outages, GWh	-	-	-	-	-	-	-	-	-	0.1	=	-	0.1	0.0%
Unplanned maintenance., GWh	-	-	0.3	-	-	-	-	-	-	-	-	-	0.3	0.0%
Planned maintenance, GWh	-	0.5	-	-	58.7	-	-	-	-	-	2.9	-	62.0	1.5%
Other outages, GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total, GWh	355.9	321.4	355.3	344.2	355.8	344.3	355.8	355.9	344.3	356.3	344.5	355.7	4189.4	100.0%
Losses SW, GWh	1.3	2.3	3.4	3.5	2.8	4.5	4.7	6.9	7.2	3.9	3.0	1.3	44.8	1.1%
Losses NE, GWh	4.2	2.0	1.5	0.8	0.9	0.8	3.0	1.3	0.3	2.0	2.8	5.7	25.4	0.6%

Figure 4.84 presents the annual utilisation of Skagerrak 3 per utilisation and unavailability category for the years 2012–2023.

Figure 4.85 presents the percentage of hours of a year Skagerrak 3 has been affected by either a limitation, a disturbance outage, an unplanned or planned maintenance outage or other outage annually during the years 2012– 2023. Figure 4.86 presents the annual number of disturbance outages, unplanned and planned maintenances and other outages during the years 2012–2023.

Figure 4.84: Annual utilisation of Skagerrak 3 per the utilisation and unavailability categories for the years 2012–2023.

Figure 4.85: Percentage of hours Skagerrak 3 has been affected by either a limitation or an outage annually since 2012. The percentage is calculated by counting the number of hours with a limitation or outage and dividing it by the total number of hours in a year. It should be noted that any single hour can be affected by both an outage and a limitation.

Figure 4.86: The annual number of disturbances, unplanned and planned maintenance outages and other outages for Skagerrak 3 for the years 2012–2023.

entsoe

4.4.20 Skagerrak 4

Figure 4.87 presents the availability and utilisation of Skagerrak 4 for 2023 and Table 4.23 presents the numerical values behind it. Skagerrak 4 has been in commercial operation since 29 December 2014. In Norway, it is connected to Kristiansand (bidding zone NO2) and in Denmark to Tjele (bidding zone DK1). The transmission capacity is 682 MW at the receiving end.

In 2023, Skagerrak 4 had an available technical capacity of 89 %. The technical capacity not used was 24 %. Totally, 2.5 TWh (23 % of the technical capacity) was transmitted north to Norway (DK1 \rightarrow NO2).

There were no anual maintenance for Skagerrak 4 in 2023. There were 12 minor disturbance outages, one major dis-

turbance outage and seven corrective maintenance which mainly were due to repair of the land cable in Denmark. Untill June 2023. Skagerrak 1, 2, 3 and 4 have been limited due to "careful operation" since the Skagerrak 4 cable faults in December 2019.

In 2023, the north and the south direction were approximately equally prioritized. The careful operation of the Skagerrak links has impacted each of the links differently based on the transmission direction and which links are in operation. For example, if all links are available and the transmission goes from Denmark to Norway (i.e., north), Skagerrak 2 is limited to 0 MW and Skagerrak 3 is limited to 200 MW to maintain acceptable electrode current levels.

Figure 4.87: Monthly percentage allocation of utilisation by category for Skagerrak 4 in 2023.

Monthly	y utilisation	of Skagerra	ik 4 (South a	& West	direction	NO2→DK1)
---------	---------------	-------------	---------------	--------	-----------	----------

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total	% total
Technical capacity not used, GWh	143.0	147.6	136.5	150.1	138.1	44.0	102.2	72.3	84.4	109.6	170.5	153.8	1452.3	24.2%
Transmission N&E, GWh	206.8	111.1	134.4	107.3	58.1	16.5	145.0	62.9	15.9	79.4	141.9	277.0	1356.2	22.6%
Transmission S&W, GWh	159.1	199.2	173.2	221.2	127.7	152.8	260.3	374.2	392.5	187.8	174.2	75.6	2498.0	41.7%
Limitations, GWh	-	0.7	-	13.8	5.8	-	-	-	-	-	-	-	20.3	0.3%
Disturbance outages, GWh	-	1.1	61.4	-	-	24.8	=	-	-	-	5.8	2.5	95.7	1.6%
Unplanned maintenance., GWh	-	-	-	-	-	-	2.0	-	-	-	-	-	2.0	0.0%
Planned maintenance, GWh	-	-	2.6	-	179.3	255.0	-	-	-	132.8	-	-	569.8	9.5%
Other outages, GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total, GWh	508.9	459.6	508.2	492.5	509.1	493.1	509.5	509.4	492.8	509.7	492.5	508.9	5994.2	100.0%
Losses SW, GWh	3.5	4.4	3.7	4.6	2.6	3.1	5.2	7.6	7.9	3.8	3.4	1.5	51.3	0.9%
Losses NE, GWh	5.2	2.8	3.8	3.0	1.6	0.4	3.6	1.5	0.4	1.9	3.6	7.1	34.8	0.6%

Figure 4.88 presents the annual utilisation of Skagerrak 4 per utilisation and unavailability category for the years 2015–2023.

Figure 4.89 presents the percentage of hours of a year Skagerrak 4 has been affected by either a limitation, a disturbance outage, an unplanned or planned maintenance outage or other outage annually during the years 2015– 2023. Figure 4.90 presents the annual number of disturbance outages, unplanned and planned maintenances and other outages during the years 2015–2023.

Figure 4.88: Annual utilisation of Skagerrak 4 per the utilisation and unavailability categories for the years 2015–2023.

Number of outages annually for Skagerrak 4

Figure 4.89: Percentage of hours Skagerrak 4 has been affected by either a limitation or an outage annually since 2015. The percentage is calculated by counting the number of hours with a limitation or outage and dividing it by the total number of hours in a year. It should be noted that any single hour can be affected by both an outage and a limitation.

Figure 4.90: The annual number of disturbances, unplanned and planned maintenance outages and other outages for Skagerrak 4 for the years 2015–2023.

4.4.21 South West Link 1

Figure 4.91 presents the availability and utilisation of South West Link 1 for 2023 and Table 4.24 presents the numerical values behind it. South West link 2 is connected between Barkeryd (SE3) and Hurva (SE4) in Sweden, and runs next to South West link 1. The parallel South West link 1 and 2 were commissioned on 2021 and have each a transmission capacity of 600 MW (1200 MW in total). In 2023, there were four maintenance outages and two five disturbance outages. The available technical capacity was approximately 66 % for South West link 1. One disturbance outage in particular concerning Other DC Yard and Valve Hall Equipment lasted several months and had thus had big impact on the availability of the link. The annual maintenance was conducted in June and lasted 8 days.

Figure 4.91: Monthly percentage allocation of utilisation by category for South West Link 1 in 2023.

Table 4.24: Monthly allocation of technical capacity (E_{max}) for South West Link 1 in 2023. Note that losses are not included in the technical capacity (E_{max}), as is shown in Figure 2.1.

Monthly utilisation of South West Link 1 (South & West direction SE2→SE3)														
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total	% total
Technical capacity not used, GWh	172.6	221.3	209.2	110.3	80.3	43.0	111.5	24.5	-	-	-	185.3	1157.9	22.0%
Transmission N&E, GWh	0.3	-	-	6.2	-	-	-	-	-	-	-	28.6	35.0	0.7%
Transmission S&W, GWh	125.4	162.2	223.5	315.5	251.3	385.7	334.9	296.2	10.3	-	-	79.7	2184.7	41.6%
Limitations, GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Disturbance outages, GWh	148.1	19.7	13.1	-	-	-	-	125.7	421.7	446.4	167.3	-	1341.9	25.5%
Unplanned maintenance., GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Planned maintenance, GWh	-	-	-	-	114.8	3.4	-	-	-	-	264.8	152.8	535.8	10.2%
Other outages, GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total, GWh	446.4	403.2	445.8	432.0	446.4	432.0	446.4	446.4	432.0	446.4	432.0	446.4	5255.4	100.0%
Losses SW, GWh	2.8	3.3	5.0	7.9	6.4	10.4	8.7	8.0	0.6	0.6	0.6	2.2	56.4	1.1%
Losses NE, GWh	0.3	0.1	0.1	0.2	0.1	-	0.1	0.2	0.3	0.5	0.5	1.1	3.5	0.1%

4.4.22 South West Link 2

Figure 4.92 presents the availability and utilisation of South West Link 2 for 2023 and Table 4.25 presents the numerical values behind it. South West link 2 is connected between Barkeryd (SE3) and Hurva (SE4) in Sweden, and runs next to South West link 1. The parallel South West link 2 and 2 were commissioned on 2021 and have each a transmission capacity of 600 MW (1200 MW in total). In 2023, there were six maintenance outages and two disturbance outages. The available technical capacity was approximately 93 % for South West link 2. Notable areas for outages are the DC converter and yard, which were behind four of the incidents in total. The annual maintenance was conducted in June, spanning a time of 5 days.

Figure 4.92: Monthly percentage allocation of utilisation by category for South West Link 2 in 2023.

Table 4.25: Monthly allocation of technical capacity (E_{max}) for South West Link 2 in 2023. Note that losses are not included in the technical capacity (E_{max}), as is shown in Figure 2.1.

Monthly utilisation of South West Link 2 (South & West direction SE2→SE3)														
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total	% total
Technical capacity not used, GWh	229.9	222.9	209.2	109.6	92.3	60.6	111.0	80.6	206.1	175.5	139.7	227.6	1865.0	35.5%
Transmission N&E, GWh	0.2	-	-	6.1	-	-	-	-	-	-	-	28.5	34.8	0.7%
Transmission S&W, GWh	198.7	180.3	236.6	316.2	345.7	299.4	335.4	218.2	189.5	270.9	257.0	190.3	3038.5	57.8%
Limitations, GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Disturbance outages, GWh	-	-	-	-	-	-	-	86.3	26.6	-	-	-	112.9	2.1%
Unplanned maintenance., GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Planned maintenance, GWh	17.6	-	-	-	8.4	72.0	-	61.2	9.7	-	35.3	-	204.2	3.9%
Other outages, GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total, GWh	446.4	403.2	445.8	432.0	446.4	432.0	446.4	446.4	432.0	446.4	432.0	446.4	5255.4	100.0%
Losses SW, GWh	4.5	3.8	5.4	7.9	9.0	8.1	8.8	5.8	5.2	6.6	6.4	4.8	76.3	1.5%
Losses NE, GWh	0.2	0.1	0.1	0.2	0.1	0.1	0.1	0.2	0.2	0.1	0.1	0.9	2.1	0.0%

Monthly utilisation (%) of Storebaelt

4.4.23 Storebaelt

Figure 4.93 presents the availability and utilisation of Storebaelt for 2023 and Table 4.26 presents the numerical values behind it. Storebaelt has been in operation since 2010. It connects the western part of the Danish system, which belongs to the Continental European synchronous system (Jutland and the island of Fynen), with the eastern part, belonging to the Nordic synchronous system (Zealand). The link is connected to Fraugde on Fynen (bidding zone DK1) and to Herslev on Zealand (bidding zone DK2). The transmission capacity is 600 MW. In 2023, Storebaelt had an available technical capacity of 96 %. The technical capacity not used was 45 %. Totally, 1.5 TWh (29 % of the technical capacity) was transmitted east to Zealand (DK1 \rightarrow DK2) and 1.1 TWh (21 % of the technical capacity) was transmitted west to Jutland (DK2 \rightarrow DK1).

Annual maintenance for Storebaelt lasted 5 days in May. There were one minor planned maintenance outage, where a local controller were replaced.

Rated capacity 600 MW

Figure 4.93: Monthly percentage allocation of utilisation by category for Storebaelt in 2023.

Table 4.26: Monthly allocation of technical capacity (E_{max}) for Storebaelt in 2023. Note that losses are not included in the technical capacity (E_{max}), as is shown in Figure 2.1.

Monthly utilisation of Storebaelt (South & West direction $DK2 \rightarrow DK1$)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total	% total
Technical capacity not used, GWh	186.2	180.9	183.6	215.3	189.3	256.4	274.9	229.1	279.3	213.3	178.9	163.1	2550.5	48.5%
Transmission N&E, GWh	66.6	54.1	93.9	53.0	86.5	101.4	90.4	137.2	101.1	66.1	88.3	155.8	1094.5	20.8%
Transmission S&W, GWh	193.7	168.1	168.2	160.1	170.5	74.1	81.0	26.1	40.3	166.0	164.8	127.5	1540.4	29.3%
Limitations, GWh	-	-	-	-	-	0.1	0.1	-	1.1	-	-	-	1.4	0.0%
Disturbance outages, GWh	-	-	-	-	-	-	-	-	-	1.5	-	-	1.5	0.0%
Unplanned maintenance., GWh	-	-	-	3.6	-	-	-	-	-	-	-	-	3.6	0.1%
Planned maintenance, GWh	-	-	-	-	-	-	-	54.0	10.2	-	-	-	64.2	1.2%
Other outages, GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total, GWh	446.4	403.2	445.8	432.0	446.4	432.0	446.4	446.4	432.0	447.0	432.0	446.4	5256.0	100.0%
Losses SW, GWh	3.1	2.7	2.7	2.6	2.7	1.2	1.3	0.4	0.7	2.7	2.7	2.1	24.8	0.5%
Losses NE, GWh	1.1	0.9	1.6	0.9	1.5	1.7	1.5	2.3	1.7	1.1	1.5	2.6	18.2	0.3%

Figure 4.94 presents the annual utilisation of Storebaelt per utilisation and unavailability category for the years 2012–2023.

Figure 4.95 presents the percentage of hours of a year Storebaelt has been affected by either a limitation, a dis-

turbance outage, an unplanned or planned maintenance outage or other outage annually during the years 2012– 2023. Figure 4.96 presents the annual number of disturbance outages, unplanned and planned maintenances and other outages during the years 2012–2023.

Figure 4.94: Annual utilisation of Storebaelt per the utilisation and unavailability categories for the years 2012–2023.

Figure 4.95: Percentage of hours Storebaelt has been affected by either a limitation or an outage annually since 2012. The percentage is calculated by counting the number of hours with a limitation or outage and dividing it by the total number of hours in a year. It should be noted that any single hour can be affected by both an outage and a limitation.

Number of outages annually for Storebaelt

Figure 4.96: The annual number of disturbances, unplanned and planned maintenance outages and other outages for Storebaelt for the years 2012–2023. Storebaelt had no other outages during the years 2012–2023.

prising 17 planned maintenance outages and 3 distur-

bances outages. Among the maintenance outages, a ma-

jority of them were brief and conducted for corrective

maintenance. The specific reasons for these maintenances

have in many cases not been reported. Reported reasons

are for instance AC busbar maintenance and control cen-

ter maintenance. The annual maintenance for SwePol took place during 13 days in October and the available technical

capacity during the year was approximately 90 %.

4.4.24 SwePol

Figure 4.97 presents the availability and utilisation of SwePol for 2023 and Table 4.27 presents the numerical values behind it. SwePol Link has been in operation since 2000 and it connects the Swedish and Polish transmission grids. In south-eastern Sweden (bidding zone SE4) it is connected to Stärnö and in Poland (bidding zone PL) to Slupsk. The transmission capacity is 600 MW.

In 2023, Swepol experienced a total of 20 outages, com-

Figure 4.97: Monthly percentage allocation of utilisation by category for SwePol in 2023.

Table 4.27: Monthly allocation of technical capacity (E_{max}) for SwePol in 2023. Note that losses are not included in the technical capacity (E_{max}), as is shown in Figure 2.1.

ionally admission of Swerol (South & West an ection SL4-7FL)														
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total	% total
Technical capacity not used, GWh	73.4	60.6	63.6	38.7	42.2	57.0	36.7	37.0	39.5	40.2	97.5	122.5	708.9	13.5%
Transmission N&E, GWh	5.5	0.8	16.0	8.1	9.6	14.4	9.5	3.6	3.2	7.9	37.2	138.3	253.9	4.8%
Transmission S&W, GWh	360.1	341.8	361.5	380.8	378.2	360.6	400.1	404.1	388.7	217.8	272.0	177.3	4042.9	76.9%
Limitations, GWh	0.3	-	-	1.5	4.0	-	0.1	1.2	-	-	1.8	-	8.8	0.2%
Disturbance outages, GWh	-	-	-	-	1.8	-	-	-	-	0.7	0.5	-	3.0	0.1%
Unplanned maintenance., GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Planned maintenance, GWh	7.1	-	4.8	3.0	10.7	-	-	0.5	0.6	180.4	23.0	8.3	238.4	4.5%
Other outages, GWh	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total, GWh	446.4	403.2	445.8	432.0	446.4	432.0	446.4	446.4	432.0	447.0	432.0	446.4	5256.0	100.0%
Losses SW, GWh	10.3	9.8	10.4	11.1	10.9	10.5	11.7	11.8	11.3	6.3	7.6	4.9	116.4	2.2%
Losses NE, GWh	0.1	-	0.5	0.2	0.3	0.4	0.3	0.1	0.1	0.2	1.2	4.4	7.8	0.1%

Monthly utilisation of SwePol (South & West direction SE4 \rightarrow PL)

Figure 4.98 presents the annual utilisation of SwePol per utilisation and unavailability category for the years 2012–2023.

Figure 4.99 presents the percentage of hours of a year SwePol has been affected by either a limitation, a distur-

bance outage, an unplanned or planned maintenance outage or other outage annually during the years 2012–2023. Figure 4.100 presents the annual number of disturbance outages, unplanned and planned maintenances and other outages during the years 2012–2023.

Figure 4.98: Annual utilisation of SwePol per the utilisation and unavailability categories for the years 2012–2023.

Number of outages annually for SwePol

Figure 4.99: Percentage of hours SwePol has been affected by either a limitation or an outage annually since 2012. The percentage is calculated by counting the number of hours with a limitation or outage and dividing it by the total number of hours in a year. It should be noted that any single hour can be affected by both an outage and a limitation.

Figure 4.100: The annual number of disturbances, unplanned and planned maintenance outages and other outages for SwePol for the years 2012–2023. SwePol had no other outages during the years 2012–2023.

References

- [1] DISTAC, "NORDIC AND BALTIC GUIDELINES FOR HVDC STATISTICS." https://eepublicdownloads.entsoe.eu/ clean-documents/SOC%20documents/Nordic/Nordic_and_Baltic_Guidelines_for_HVDC_Statistics_ 17.11.2020.pdf, November 2020.
- [2] DISTAC, "Nordic Grid Disturbance Statistics 2010." https://eepublicdownloads.entsoe.eu/ clean-documents/pre2015/publications/entsoe/RG_SOC_Nordic/110831_NORDIC_GRID_ DISTURBANCE_AND_FAULT_STATISTICS_2010.pdf, August 2010.
- [3] CIGRE Technical Brochure, "Protocol for reporting the operational performance of HVDC Transmission Systems," technical brochure, CIGRE, 2014.

Glossary

 DISTAC Disturbance Statistics Group. Reports to Regional Group Nordic (RGN) in ENTSO-E.
ENTSO-E European Network of Transmission System Operators for Electricity.

HVAC High-voltage alternating current.

HVDC High-voltage direct current.

LCC Line-commutated converters. NordAM Nordic Asset Management Forum. PEX Cross-linked polyethylene. RGN Regional Group Nordic. TSO Transmission System Operator. VSC Voltage-source converters. Appendices

Schematic presentation of HVDC links Δ

Figure A.1 and Figure A.2 show the schematic presentations of a HVDC converter station having line-commutated converters (LCC) and voltage-source converters (VSC), respectively. All the figures also show definitions for the origin of an event. The origin of each event is used for categorizing a disturbance or a limitation for statistical purposes. The figures also show the locations of the circuit breakers and measurement points for transferred energy on a link.

It should be noted that these figures are only show an example of a possible LCC or VSC converter station as there are multiple different ways to construct one.

Schematic of a line-commutated converter HVDC station

Figure A.1: An example of a line-commutated converter (LCC) station schematic with the connection to the AC grid. The other remote side of the HVDC link has a similar albeit mirrored version of the converter station.

Schematic of a voltage-source converter HVDC station

Figure A.2: An example of a voltage-source converter (VSC) station schematic with the connection to the AC grid. The other remote side of the HVDC link has a similar albeit mirrored version of the converter station.

B DISTAC/CIGRE origin of event classification

Table B.1 show the DISTAC origins and their subcategories and the corresponding CIGRE outage codes [3]. It should be noted that full compatibility is not achieved in control

and protection areas. The schematics in Appendix A can be helpful in visualizing the different categories.

DISTAC	DISTAC / CIGRE						
Origin of event	Subcategory / Outage Code	Comment					
Multiple places Control centre operation ¹	- C-P.L – Local HVDC Control & Protection ¹	Used primarily for annual maintenance in DISTAC. Control, protection or monitoring equipment of the local HVD station, for example, converter firing control, current and volt age regulators, converter and dc yard protections, valve contro					
	C-P.M – Master HVDC Control & Protection ¹	and protection, and local control sequences. Equipment used for inter-station coordination of current and voltage orders, inter-station sequences, auxiliary controls such as damping controls or higher level controls such as run- back/run-up power control or frequency control.					
	C-P.T – Control & Protection and Telecommunication ¹	Equipment for coding of control and indication information to be sent over a telecommunication circuit including the telecom- munication circuit itself (microwave, PLC or optical).					
Converter station operation ¹	Same as for "Control centre operation" above						
Control, protection and communication ¹	Same as for "Control centre operation" above						
AC External grid	EXT – External AC System						
AC and auxiliary equipment	AC-E.F – AC Filter and Shunt Bank	Including AC filter CTs, arresters as well as PLC/RI, SVC, STAT- COM, series capacitor at HVDC station.					
	AC-E.SW – Other AC Switchyard Equipment AC-E.CP – AC Control and Protection	For example, switches, surge arresters, busbars, insulators. AC C&P including CTs, VTs, also for auxiliary power and valve cooling.					
	AC-E.TX – Converter Transformer	Including interface transformers.					
	AC-E.SC – Synchronous Compensator	Including SC cooling system and exciter.					
	AC-E.AX – Auxiliary Equipment and Auxiliary Power	For example, auxiliary transformers, pumps, battery charg- ers, heat exchangers, cooling system instrumentation, LV switchgear, motor control centres, fire protection, civil works.					
DC converter and	V.E – Valve Electrical						
yard	V.VC – Valve Cooling	Valve Cooling pipes and parts in valve hall.					
	V.C – Valve Capacitor						
	DC-E.F – DC Filters						
	DC-E.SR – DC Smoothing Reactor						
	DC-E.SW – DC Switching Equipment						
	DC-E.ME – DC Measuring Equipment						
	DC-E.O – Other DC Yard and Valve Hall Equipment						
DC Electrodes	DC-E.GE – DC Ground Electrode						
	DC-E.EL – DC Ground Electrode Line						
DC Overhead line	TL-OH – DC Overhead Transmission Line						
DC Cable	TL-C – DC Underground / submarine Cable						
Other or unknown	0 – Other						

Table B.1: The DISTAC origin of event categories and subcategories and the corresponding CIGRE outage codes.

 $^{1}\,$ There is no direct one-to-one compatibility between DISTAC and CIGRE for these definitions.

C Contact persons

Denmark	Energinet Tonne Kjærsvej 65 DK-7000 Fredericia, Denmark	Norway	Statnett SF Nydalen allé 33, PB 4904 Nydalen NO-0423 Oslo					
	Anders Bratløv Tel. +45 51 38 01 31 E-mail: anv@energinet.dk		Jørn Schaug-Pettersen Tel. +47 23 90 35 55 E-mail: jsp@statnett.no					
	Jakob Cordes Nørskov Tel. +45 26 36 40 50 E-mail: JNV@energinet.dk	Sweden	Svenska kraftnät Sturegatan 1, P.O. Box 1200 SE-172 24 Sundbyberg					
Estonia	Elering AS Kadaka tee 42 Tallinn, Estonia		Jonathan Kristensson Tel: +46 10 475 81 69 Mobile: +46 72 512 22 80 E-mail: Jonathan.Kristensson@svk.se Tsega Muzollo Mobile: +46 72 444 50 62					
	Irene Puusaar Tel. +372 508 4372 E-mail: irene.puusaar@elering.ee							
	Kaur Krusell Tel. +372 564 86011 E-mail: kaur.krusell@elering.ee	Publisher	E-mail: tsega.muzollo@svk.se ENTSO-E AISBL Rue de Spa 8					
Finland	Fingrid Oyj Läkkisepäntie 21, P.O. Box 530 FI-00101 Helsinki, Finland		1000 Brussels, Belgium Tel. +32 2 741 09 50 info@entsoe.eu					
	Markku Piironen Tel. +358 30 395 4172 Mobile +358 40 351 1718 E-mail: markku.piironen@fingrid.fi							
Lithuania	Litgrid AB Karlo Gustavo Emilio Manerheimo st. 8 LT-05131, Vilnius							
	Valdas Tarvydas Tel. +370 686 77626 E-mail: valdas.tarvydas@litgrid.eu							

D Sorted overview of utilisation and unavailability for all HVDC links

This chapter presents sorted versions of Figure 4.1 Utilisation (%) by category for each HVDC link in 2023.

Utilisation overview of each HVDC link in 2023

Figure D.1: Overview of each HVDC link sorted by descending unavailable technical capacity (E_{U}) in 2023.

Utilisation overview of each HVDC link in 2023

Utilisation overview of each HVDC link in 2023

Figure D.3: Overview of each HVDC link sorted by descending technical capacity not used (E_{TCNUEM}) in 2023.

Additional figures Ε

new kinds of figures without affecting the rest of the report. Furthermore, it shows what kind of statistical data

This appendix was introduced to allow experimenting with can be derived from the data collected by the DISTAC group.

Annual utilisation per type of HVDC converter **E.1**

Figure E.1 presents the annual utilisation of all HVDC links HVDC links using voltage-source converters (VSC). using line-commutated converters (LCC) and Figure E.2 all

Annual utilisation of all LCC HVDC links

Figure E.1: Annual utilisation of all HVDC links using line-commutated converters (LCC) together presented in megawatt hours (MWh). Vyborg link is not included in the report year 2022.

Figure E.2: Annual utilisation of all HVDC links using voltage-source converters (VSC) together presented in megawatt hours (MWh).

E.2 Additional figures with percentages of hours unavailable

This section presents additional figures with a more detailed categorisation of unavailability. Figure E.3 presents the hours (%) limited due to seasonal causes annually for all HVDC links. Figure E.4 presents the hours (%) limited by limitation origin and type annually for all HVDC links. The limitation origins are AC and DC limiting conditions, and the types are planned or unplanned. Figure E.5 presents the hours (%) limited by limitation origin and type in 2023 for each HVDC link. Figure E.6 presents the same but for each market connection.

Figure E.7 presents hours (%) unavailable due to planned maintenance by primary cause in 2023 for each HVDC link and the corresponding annual values for all HVDC links combined.

Hours (%) limited due to seasonal causes, all HVDC links

Figure E.3: Hours (%) limited due seasonal causes for all HVDC links. The percentage is calculated by counting the number of hours with a limitation due to seasonal causes and dividing it by the total number of hours in a year.

Figure E.4: Hours (%) by limitation origin and type annually for all HVDC links. The limitation origins are AC limiting and DC limiting and the types are planned and unplanned. The percentage is calculated by counting the number of hours with the specific limitation origin and type and dividing it by the total number of hours in a year. Limitation type was not recorded prior to 2020.

ENTSO-E HVDC Utilisation and Unavailability Statistics 2023

| 16 September 2024

Figure E.5: Hours (%) limited by limitation origin and type in 2023 for each HVDC link. The percentage is calculated by counting the number of hours with the specific limitation origin and type and dividing it by the total number of hours in a year.

Hours (%) limited by limitation origin and type in 2023

Figure E.6: Hours (%) limited by limitation origin and type for each market connection in 2023. The percentage is calculated by counting the number of hours with the specific limitation origin and type and dividing it by the total number of hours in a year.

Figure E.7: On the left: hours (%) with planned maintenance by primary cause for each HVDC link in 2023. On the right: hours (%) with planned maintenance by primary cause annually for all HVDC links combined. The percentage is calculated by counting the number of hours with a planned maintenance and dividing it by the total number of hours in a year.

E.3 Additional figures with origin of event

This section presents additional figures about disturbance and maintenance outages, with a focus on their origin of the event. Origin of event corresponds to the location on the HVDC link that the event originated from. The origin of event categories and subcategories are presented in Appendix B. The HVDC link schematics in Appendix A can be helpful in visualising the categories.

Figure E.8 presents the number of disturbance outages divided by the number of HVDC links annually grouped by origin. Figure E.9 presents the annual unavailable capacity due to disturbance outages by origin of event for all HVDC

links combined. Last, Table E.1 presents the numerical values behind Figure E.9 with further subcategorisation of the origin.

Figure E.10 presents the annual unavailable capacity due to maintenance outages by primary cause. Figure E.11 presents the annual unavailable capacity due to corrective maintenances by origin of event for all HVDC links, and the number of corrective maintenances divided by the number of HVDC links annually grouped by origin of event. Primary cause of outages has not been recorder prior to the year 2019.

Number of disturbance outages divided by the number of HVDC links by origin of event

Figure E.8: Number of disturbance outages divided by the number of HVDC links, grouped by origin of event.

Annual unavailable capacity due to disturbance outages by origin of event

Figure E.9: Annual unavailable capacity due to disturbances outages by origin of event for all HVDC links.

ENTSO-E HVDC Utilisation and Unavailability Statistics 2023

| 16 September 2024

Table E.1: Annual unavailable capacity due to disturbances outages by origin of event and subcategory for all. N/A means not available. Note that the level of detail in the data collection has increased since 2019.

Annual utilisation of all HVDC links

		GWh											
Origin	Subcategory	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
AC and auxiliary equipment	AC-E.AX - Auxiliary Equipment and Auxiliary Power	-	-	-	-	-	-	-	1.5	280.1	12.9	97.2	6.5
	AC-E.CP - AC Control and Protection		-			-	-	-	15.0	3.6	6.7	1.7	2.5
	AC-E.F - AC Filter and Shunt Bank	-	-	-	-	-	-	-	0.1	0.6	0.1	112.5	-
	AC-E.SW - Other AC Switchyard Equipment	-	-	-	-	-	-	-	0.2	1.1	18.6	-	-
	AC-E.TX - Convertor Transformer	-	-	-	-	-	-	-	168.7	0.2	3.3	13.2	226.6
	N/A	93.9	13.5	556.5	1005.9	228.9	65.2	260.5	0.8	1.3	1.1	9.8	-
AC external grid	EXT - External AC System	-	-	-	-	-	-	-	8.0	9.2	4.9	5.3	9.7
	N/A	11.4	10.4	1.9	6.2	13.6	0.5	2.2	-	-	9.1	-	0.4
Control center operation	C-P.M - Master HVDC Control & Protection	-	-	-	-	-	-	-	-	-	-	0.0	-
	N/A	-	-	5.1	-	9.6	-	0.2	0.0	-	-	-	-
Control, protection and	C-P.L - Local HVDC Control & Protection	-	-	-	-	-	-	-	6.8	10.3	106.2	7.8	21.0
communication	C-P.M - Master HVDC Control & Protection	-	-	-	-	-	-	-	-	6.6	37.3	-	-
	C-P.T - Control & Protection and Telecommunicati	-	-	-	-	-	-	-	-	0.7	-	-	0.7
	N/A	79.8	38.3	23.1	12.6	26.3	63.5	0.6	2.7	-	1.3	0.2	1.6
	C-P.L - Local HVDC Control & amp; Protection	-	-	-	-	-	-	-	-	-	-	46.1	-
Converter station operation	C-P.L - Local HVDC Control & Protection	-	-	-	-	-	-	-	21.1	0.8	84.2	-	3.2
	C-P.M - Master HVDC Control & Protection	-	-	-	-	-	-	-	8.2	0.6	-	-	3.7
	N/A	0.4	5.9	2.3	290.4	20.1	-	1.5	-	-	-	-	-
	C-P.L - Local HVDC Control & amp; Protection	-	-	-	-	-	-	-	-	-	-	1.8	-
DC cable	TL-C - DC Underground / submarine Cable	-	-	-	-	-	-	-	1729.1	3410.9	1623.7	3748.9	178.9
	N/A	2505.5	1704.1	226.9	32.2	876.0	1361.8	996.5	-	-	-	-	341.8
DC converter	DC-E.F - DC Filters	-	-	-	-	-	-	-	-	-	0.1	-	-
	DC-E.ME - DC Measuring Equipment	-	-		-	-	-	-	65.2	3.6	148.3	-	61.5
	DC-E.O - Other DC Yard and Valve Hall Equipment	-	-		-	-	-	-	2.8	-	18.6	30.2	1435.1
	DC-E.SR - DC Smoothing Reactor	-	-		-	-	-	-	245.3	174.5	-	-	26.7
	V.C - valve capacitor	-	-		-	-	-	-	36.5	-	-	-	-
	V.E - Valve Electrical	-	-	-		-		-	36.9	33.6	217.0	7.1	-
	V.VC - Valve Cooling	-	-		-	-	-	-	52.8	13.5	91.4	3.6	2.4
	N/A	1192.2	888.1	283.0	3.3	37.2	33.8	210.6	424.4	-	12.4	-	-
	DC filter	-	-		-	-	-	-	-	-	-	339.1	-
	V.C - Valve Capacitor	-	-	-	-	-	-	-	-	-	-	994.1	91.3
DC electrodes	N/A	3.2	18.4	6.8	9.0	136.3	-	4.6	-	-	-	-	-
	DC-E.EL - DC Ground Electrode Line	-	-	-	-	-	-	-	-	-	-	-	988.6
DC overhead line	TL-OH - DC Overhead Transmission Line	-	-		-	-	-	-	3.1	-	-	28.5	16.6
	N/A	-	-	0.6	3.0	2.3	-	-	-	-	-	-	-
Multiple places	N/A	24.3	2.1	0.2	0.2	0.7	-	-	-	-	-	106.8	-
N/A	TL-C - DC Underground / submarine Cable	-	-	-	-	-	-	-	-	-	-	34.8	-
	N/A	-	-	-	-	-	-	186.5	0.7	42.8	-	147.0	154.5
Other or unknown	O - Other	-	-	-	-	-		-	0.0	4.5	1.2	0.2	27.8
	N/A	13.2	0.9	34.5	1.4	0.7	8.4	0.7	3.1	83.1	17.1	-	6.5

Table dist.out. GWh lookup without zeros broken down by GWh (Parameters) and Datetime Year vs. Origin and Subcategory. The data is filtered on HVDC link, which excludes NULL, Vyborg Link FI->FU and Vyborg Link RU->FL.

Annual unavailable capacity due to maintenance outages by primary cause

Figure E.10: Annual unavailable capacity due to maintenance outages by primary cause for all HVDC links. Primary cause of outages has not been recorded prior to 2019.

Number of corrective maintenances divided by number of HVDC links, by origin of event

Figure E.11: On the left: annual unavailable capacity due to corrective maintenance outages by origin of event for all HVDC links. On the right: number of corrective maintenance outages divided by the number of HVDC links annually grouped by origin of event. Primary cause of outages has not been recorder prior to the year 2019.